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1. APPROACH* 
 Tremendous developments in numerical 
modeling and in computing capabilities during the last 
decades have contributed dramatically to scientific 
and practical significance of interdisciplinary climate, 
climate change and weather prediction numerical 
modeling.  One of the main problems of development 
and implementation of these high-quality high-
resolution atmospheric and oceanic models is the 
complexity of physical, chemical and biological 
processes involved.  Parameterizations of model 
physics, adjusted to model resolution and computer 
resources, are approximate schemes based on 
simplified 1-D first principles equations and empirical 
data.  The parameterizations are so time consuming, 
even for most powerful modern supercomputers, that 
they have to be calculated less frequently than model 
dynamics (based on solving 3-D geophysical fluid 
dynamics equations).   This negatively affects the 
accuracy of the model physics calculations and the 
temporal consistency and may lead to a significant 
reduction of the accuracy of climate simulations and 
weather predictions.  For example, calculation of a 
model physics package in a typical moderate (a few 
degrees) resolution GCM (General Circulation Model), 
such as the NCAR (National Center for Atmospheric 
Research) CAM-2 (Community Atmospheric Model) 
takes approximately 80% of the total model 
computations. Higher and variable model resolutions 
[e.g. Fox-Rabinovitz et al. 2002] and more frequent 
model physics calculations, desirable for temporal 
consistency with model dynamics, would increase the 
percentage to more than 90%.   
 Such a situation is an important motivation to 
look for alternative, faster ways of calculating model 
physics and chemistry.  One of the alternative 
approaches is based on the idea of using fast and 
accurate statistical techniques for approximating 
atmospheric physics and chemistry 
parameterizations.  For example, a traditional 
statistical technique based on representation of 
input/output relationship as an expansion of 
hierarchical correlated functions [Rabitz et al., 1998; 
Rabitz and Alis, 1999], has been successfully used in 
some atmospheric chemistry applications (see 
[Schoendorf et al., 2003] and references there).   
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 During the last decade a new emerging 
approach based on neural network (NN) 
approximations has found applications in a  large 
variety of in different fields; specifically, for fast and 
accurate approximation of model physics processes 
[Krasnopolsky and Chevallier 2001,2003] and for 
satellite retrieval procedures [Krasnopolsky, 1997; 
Krasnopolsky and H. Schiller, 2003].  Recently, the 
NN approach has been used to develop a fast (8 
times faster than the original parameterization) and 
accurate long-wave (LW) radiation parameterization 
for the ECMWF model [Chevallier et al. 1998, 2000].  
The NN approach has been also used for 
approximations of model physics in ocean numerical 
models [Krasnopolsky et al., 2002] where acceleration 
of calculation from 10 to 104 times has been achieved, 
as compared with original parameterizations.  In this 
study, we apply the NN approach to approximating 
the LW radiation parameterization in NCAR CAM 
[e.g., Journal of Climate, 1998].  Calculation of the LW 
radiation is the most time consuming part of the 
atmospheric physics calculations.  It takes about 70% 
of time required for calculation of model physics and, 
therefore, about 60% of the total model calculation 
time. 
 There are two major approaches in 
developing NNs for model physical processes, 
following either the physical or the computational 
structure the scheme.  Following a physical structure 
is a logical or preferable approach in the case of 
developing new or modified parameterizations using 
mostly observational and possibly other data.  Such 
an approach has been used by Chevalier [1998] (see 
also [Krasnopolsky and Chevalier 2001, 2003]) to 
develop the highly efficient NN based LW radiation 
parameterization (NeuroFlux) for the ECMWF model.  
Because of a strong coupling of clouds and radiation 
in the parameterization scheme, layer-by-layer NNs 
were developed that resulted in a battery of 40 NNs 
describing the LW radiation scheme.  However, when 
developing NN approximations for already existing 
parameterizations, it is logical and more efficient to 
follow the computational (rather than physical) 
structure of a model physics scheme.  Practically it 
means that the computational timing should be 
assessed and “bottlenecks” (the most time consuming 
parts of a parameterization) need to be determined.  
The NN approximation(s) then are applied to speed-
up these parts.  However, the most efficient and 
convenient way is developing only one NN 



approximation for a model physics parameterization.  
Such an approach has been introduced in this study.  
One NN approximation has been developed for the 
NCAR CAM-2 LW radiation parameterization with 
well-structured inputs and outputs. 
 NN approximations can be used in model 
physics because any parameterization can be 
considered as a continuous or almost continuous 
mapping (input vector vs. output vector dependence).  
A NN is a generic tool to approximate such mappings 
and is an analytical approximation that uses a family 
of functions like: 
 

                                                                  (1) 
 
where xi and yq are components of the input and 
output vectors respectively, a and b are fitting 
parameters, and φ  is a so called activation function 
(usually it is a hyperbolic tangent), n and m are the 
numbers of inputs and outputs respectively, and k is 
the number of neurons in the hidden layer (for more 
details see appendix in [Krasnopolsky et al., 2002]).  
 
2. NN APPROXIMATION FOR THE NCAR 
CAM LONG WAVE ATMOSPHERIC RADIATION  
 The function of the LW radiation 
parameterization in atmospheric GCMs is to calculate 
heat fluxes caused by LW radiation processes in the 
atmosphere, from which model-layer heating rates are 
obtained.  The complete description of the NCAR 
CAM-2 atmospheric LW radiation parameterization is 
presented in [Collins 2001, 2002].  Since the 
calculations of cloudiness are completely separate 
from the calculations of radiation effects, we are able 
to approximate the entire LW radiation 
parameterization with only one NN, with cloudiness 
being a part of the input vector.   
 The NN developed for approximation of the 
NCAR CAM-2 LW radiation parameterization has 101 
inputs (n = 101 in eq. (1)), which include six profiles 
(atmospheric temperature, humidity, ozone 
concentration, path length for CO2, path length for 
H2O, and cloudiness) and two relevant surface 
characteristics (surface pressure and upward LW flux 
on a surface).  This NN has 19 outputs (m = 19 in eq. 

(1)): a profile of the heat rates (HRs) 1,...,18{ }k kq =  and 

downward LW flux to the surface.  The NN has one 
hidden layer with 90 neurons (k = 90 in eq. (1)) that 
provide sufficient accuracy of approximation.  An 
important diagnostic parameter, the outgoing LW 
radiation (OLR) at the top of the atmosphere, is 

calculated using the NN output HRs 1,...,18{ }k kq = ,  
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where G is a constant and kP  is the atmospheric 

pressure at the level k, and L = 18 (18 vertical levels 
was used in this study). 

 A representative data set covering the entire 
year of 2002, consisting of about 100,000 input/output 
combinations, has been generated using a single 
column model with the physics identical to that of 
NCAR CAM-2.  The eighteen level single column 
model is run for one time step to generate the 
input/output data set using the NCAR/NCEP 
reanalysis initial conditions for the first day of each 
month of the year (every six hours).  This dataset is 
divided into three parts, each containing 
approximately 33,000 input/output combinations.  The 
first part is used for NN training, the second one is 
used for tests (control of overfitting, control of a NN 
architecture, etc.), and the third part is used for 
validations only. 
 
Table 1. Accuracy and Computational Performance of 
LW NN Approximation for NCAR CAM-2 and the 
ECMWF Model vs. their Corresponding Original 
Parameterizations  
Para
meter 

Mod
el 

Bias RMSE Mean σ 
Perfor
mance 

EC
MW

F 
0.2 0.45   

8 
times 
faster 

 
HR 

(K/d) 

NC
AR 

2. 
10-4 0.05 -1.43 1.76 

65 
times 
faster 

EC
MW

F 
0.8 1.9    

OLR 
(Wt/m

2) 
NC
AR 

0.01 0.9 240.5 46.9  

 

 Table 1 shows a bulk validation statistics for 
the accuracy of the NN approximation and its 
computational performance.   The accuracy and 
performance of the ECMWF NeuroFlux approximation 
is also shown for comparison.  The NN approximation 
has been evaluated against the original 
parameterization.  In order to calculate error statistics 
presented in Table 1, both the original 
parameterization and its NN approximation have been 
applied to the validation data.   Two sets of the 
corresponding HR profiles and OLRs have been 
generated.  Bias (or mean error) and RMSE 
presented in Table 1 have been calculated as the 
mean differences between these two sets of HRs and 
OLRs.  Mean value and standard deviation (σ) of HRs 
and OLRs are presented for a better understanding of 
relative errors.  The ECMWF results for the NeuroFlux 
are also shown for comparison.   Our NN 
approximation has very high accuracy with an almost 
negligible systematic error (bias).  Most importantly, it 
performs 65 times faster than the original 
parameterization.  This speed-up is achieved for NN 
approximation of the entire LW radiation scheme and 
includes calculations of optical properties (emissivity 
and absorptivity), as well as HRs and radiative fluxes.  
During a normal execution of CAM-2 the relatively 
expensive emissivity and absorptivity calculations are 
made every 12 hours, while HRs and radiative fluxes 
(about 1% of the computing time needed for the entire 
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Fig.1 (the upper pannel) Profiles of bias (solid line) 
and RMSE (dashed line) for HRs.  The vertical axis 
units are in mb.  At each vertical level, both bias and 
RMSE are normalized using the standard deviation of 
the HRs at the same vertical level.  (the lower panel) 
Distribution of errors for HRs (solid line).  The 
horizontal axis shows HRs in Kelvin per day.  The 
normal distribution with the same mean value and 
standard deviation (dotted line) is presented for 
comparison. 
 
LW radiation scheme) are calculated every hour. Our 
speed-up for the entire LW radiation scheme provides 
the opportunity of calculating optical properties every 
hour, i.e. as frequently as calculations of HRs and 
radiative fluxes.  
 Since both the original parameterization and 
the NN approximation are very complicated 
multidimensional objects (mappings), calculating bulk 
statistics is not sufficient for evaluating the accuracy 
of the approximation.   We evaluated many different 
statistical metrics of the approximation accuracy. 

Fig.2. The fourth vertical level.  The upper panel 
shows a scatter plot (small black dots) and binned 
scatter plot (large black dots) for HRs generated by 
the original parameterization (horizontal axis) and its 
NN approximation (vertical axis).  Two dotted lines 
show one standard deviation for the HRs at this 
vertical level.  The lower panel shows RMSE as a 
function of HRs.  The dashed line shows the 
distribution of occurrences.   
 
   Fig. 1 (the upper panel) shows vertical profiles for 
bias and RMSE in units of standard deviations for 
each particular level.  The bias is practically zero (see 
Table 1).  The RMSEs are also very small; they do 
not exceed 5-6% of the standard deviations at the 
corresponding level.   Fig. 1 (the lower panel) shows 
the distribution of errors in approximating HRs.  The 
distribution is strongly peaked about 0. K/d.  It is very 
close to the normal distribution with the same mean 
and standard deviation.  Fig. 2 demonstrates other 
characteristics of the approximation accuracy 
statistics.  The figures correspond to the fourth (from 
the ground) vertical layer of the NCAR CAM-2, which 
 



Fig. 3. An instantaneous HR profile (solid) with a 
complicated cloudiness and its NN approximation 
(dashed).  The vertical axis units are in mb.  The 
horizontal axis shows HRs in Kelvin per day. 
 
is heavily affected by cloudiness.  The upper panel 
shows the scatter plot for HRs and the lower panel 
shows the approximation RMSE as a function of HRs; 
it also shows the distribution of occurrences.  The 
approximation errors are small and random (the 
systematic error or bias is very small) in the areas 
well supported by data.  In the areas where there are 
little data (tails of the distribution) errors increase.  In 
these areas the NN is forced to extrapolate.  These 
areas should be enriched by simulated data to 
improve the accuracy of the NN approximation there, 
namely, the original parameterization should be run in 
this sub-domain to generate more data.     
 Fig. 3 shows an instantaneous HR profile 
and its NN approximation.  The profile demonstrates a 
very complicated vertical distribution including a 
significant amount of cloudiness.  It is noteworthy that 
the NN approximation is still very close to the original 
HRs even for complicated cloudiness profiles.    
 The NN approximation of the NCAR CAM-2 
LW radiation parameterization shows performance 
and accuracy comparable with highly efficient 
ECMWF NeroFlux (see Table 1).  The NN 
approximation of the NCAR CAM-2 LW radiation 
parameterization has a simpler architecture.  A 
simpler NN architecture could be introduced because 
of a clear separation between calculations of 
cloudiness and radiative processes in the original 
NCAR CAM-2 LW radiation parameterization.  The 

original ECMWF radiation parameterization did not 
have this more straightforward modular structure.  
 
3.  CONCLUSIONS 
 In the study, we evaluated the accuracy and 
performance of a NN approximation developed for the 
LW radiation parameterization in NCAR CAM.  We 
selected the LW radiation because it is the most time 
consuming component of the model physics.  
Application of this approach allows calculation of LW 
radiation 65 times faster than the original 
parameterization without compromising the accuracy 
of approximation.  The systematic error introduced by 
the NN approximation is negligible.  The random error 
is also very small and does not exceed several 
percent of the natural variability of the radiation 
parameters.  
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