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ABSTRACT

The objective of this research is to develop a data
assimilation framework in which microwave bright-
ness temperatures at various temporal and spatial
resolutions, and frequencies may be merged with a
mainstream land surface model using an ensemble
Kalman smoother to obtain consistent estimates of
soil moisture and surface fluxes. Land data assim-
ilation using filters, such as extended or ensemble
Kalman filters, the data is ingested sequentially as
it becomes available. This framework is appropriate
for forecasting problems where the observations up
to the current time are used to update the initial con-
ditions for forecasts into the future. In the land data
assimilation problem, the objective is often reanal-
ysis rather than forecasting. Smoothing combines
future and past data to make an estimate. This addi-
tional information on how the system evolves yields
improved estimates of the state at the present time.
The hypothesis of this research is that developing
an ensemble smoother from a successful ensemble
Kalman filter algorithm would lead to improved esti-
mates by extracting more information from the obser-
vational data available. This hypothesis is founded
on the principle of smoothing and analysis of results
from the ensemble Kalman filter approach. The fi-
nal data assimilation framework will be used to make
mission design decisions for future soil moisture mis-
sions and will demonstrate the suitability of ensem-
ble smoothing to reanalysis-type problems in hydrol-
ogy.

1 FILTERING AND SMOOTHING

There are three fundamental types of problem in
data assimilation, namely filtering, forecasting and
smoothing. Filtering techniques are ideal for control
problems as they estimate the state as each new
observation becomes available. Forecasting tech-
niques are used to determine the state at a time
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later than the last measurement, and so are used in
Numerical Weather Prediction and flood forecasting.
Smoothing is ideal for analysing historic data, so that
the state estimate at a given time is determined by
including subsequent observations. As hydrologists
our goal is not likely to be forecasting soil moisture
as its future state is largely dictated by future precip-
itation. We are often,however, interested in perform-
ing a reanalysis of soil moisture data obtained during
field campaigns (e.g. SGP97,SGP99 and SMEX02),
or from future pathfinder missions such as HYDROS
and SMOS. As we will have data for the entire study
interval, using a smoothing technique rather than a
filtering technique enables us to extract information
from later observations to improve our estimate of
the current state.

2 ENSEMBLE TECHNIQUES

The classic Kalman filter provides the optimal state
estimate for linear systems. It is therefore of limited
use in hydrological applications where the physical
models are often non-linear. In the extended Kalman
filter approximate expressions are found for the prop-
agation of the conditional mean and its associated
covariance matrix. The structure of the propagation
equations is similar to those of the classic Kalman
filter for a linear system, as they are linearized about
the conditional mean. Linearization of the Kalman
filter is seriously prone to unstable growth of the co-
variance matrices (Ljung, 1979). Any artificial lim-
its on the propagation of the covariance matrix re-
sults in suboptimal filters and poor estimation. To
use an Extended Kalman Filter in the soil moisture
estimation problem would require derivation of a tan-
gent linear model to approximate the Land Surface
Model, as well as techniques to treat the instabili-
ties which may arise from this approximation. Fortu-
itously, Ensemble techniques offer a means to avoid
such linearizations. In the Ensemble Kalman filter
an ensemble of model states is integrated forward
in time and used to calculate the mean and error
covariance when required. The traditional update



equation from the classical Kalman filter is used,
with the Kalman Gain calculated from the error co-
variances provided by the ensemble.Our goal is to
develop an ensemble-based smoother from a suc-
cessful Ensemble Kalman filter algorithm for use in
the land data assimilation problem. The hypothesis
of this research is that estimates obtained using en-
semble smoother techniques will improve on those
obtained by ensemble filtering, as they include infor-
mation on the future state as well as its prior state.

3 ENSEMBLE MOVING BATCH SMOOTHER

Our ensemble smoother algorithm is an extension of
the the sequential Ensemble Kalman filter used in
Margulis et al. (2002). The Kalman filter equations
are identical, except that the state vector and covari-
ance are augmented to include the states at times
subsequent to the time of interest. The interval over
which we smooth is bound by observations, as ob-
servations are the means by which information is in-
corporated into the smoother. The augmented state
vector will therefore consist of the states at the ob-
servation times, but can include states at any times
at which we desire an estimate. By controlling the
number of observations over which the smoother ex-
tends and the number of intermediate states we can
effectively limit the computational burden.

4 OTHER COMPONENTS OF THE DATA ASSIM-
ILATION FRAMEWORK

4.1 Forward Model

The NCAR Land Surface Model Version 1.0 (Bonan
et al. (1996)) shall be used as the forward model
in this data assimilation framework. NCAR LSM is
a 1D model of energy, momentum, water, and CO2

exchanges between the atmosphere and land ac-
counting for ecological differences among vegetation
types, thermal and hydrological differences among
soil types and multiple surface types including lakes
and wetlands within a grid cell. The biophysical and
biogeochemical fluxes depend on the ecological and
hydrologic state of the land, which are updated by
ecological and hydrologic sub-models. Hydrologic
processes modeled include interception, throughfall
and stemflow, snow accumulation and melt, infiltra-
tion and run-off, soil hydrology, including water trans-
fer in a six-layer soil column

4.2 Meteorological Forcing Data

In this experiment, we use forcing data recorded at
El Reno during SGP97. Precipitation forcing was
generated using the Rectangular Pulses Model us-
ing parameters from Hawk and Eagleson (1992) ap-
propriate to Oklahoma City . This ensemble was
conditioned on the five-day total from the real precip-
itation. This enables us to have temporal uncertainty
as well as uncertainty in the amount of precipitation
which occurred. (Margulis, 2003).

4.3 Radiative Transfer Model

The radiative transfer model relates the states of the
model to the radio brightness observations. The ra-
diative transfer model used is based on that used in
Jackson et al. (1999) to retrieve soil moisture from
ESTAR observations during SGP97. However, we
include the effects of soil moisture on soil dielectric
properties by including the mixing model of Wang et
al. (1980). Surface roughness and vegetation ef-
fects from Choudhury et al. (1979) and Jackson et
al. (1991) respectively are also included.

5 EXPERIMENTAL SET-UP

To test the smoother algorithm, we will use an Ob-
serving System Simulation Experiment (OSSE). The
model is forced with the true precipitation recorded
at El Reno during SGP97. The model parameters
are just one realization of the possible ensemble of
parameters, so the simulated truth is effectively one
realization from the ensemble. We generate the ob-
servations which would have been obtained has this
sythetic truth been observed. The experimental ob-
jective is to try to estimate this synthetic truth using
the land surface mode, the ensemble moving batch
smoother and the synthetic observations.

6 RESULTS

It will be shown that using the ensemble moving
batch smoother can yield improved estimates of
the desired states. For example, Figure 1 shows
that the Ensemble Kalman Filter improves on the
estimate obtained using the Ensemble Open Loop
and that this estimate can be further improved
by implementing the Ensemble Moving Batch
Smoother. Alternatively, this improvmenent can be
shown in terms of the covariance as in Figure 2. The
covariance across the updated ensemble when the
Ensemble Kalman Filter is used is lower than that



of the Ensemble Open Loop. A greater reduction in
covariance can be achieved if we use the Ensemble
Moving Batch Smoother rather than the Ensemble
Kalman Filter.
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Vol. Soil Moisture (Layer 1), at El Reno during SGP97
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Figure 1: Volumetric Soil Moisture in the surface layer (top panel) and the second layer (lower panel) at
El Reno during SGP97. Estimated volumetric soil moisture from the Ensemble Moving Batch Smoother
(EnsMB) is compared to the truth as well as estimates from the Ensemble Open Loop (EnsOL) and the
Ensemble Kalman Filter (EnsKF).
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Figure 2: Volumetric Soil Moisture in the surface layer (top panel) and the second layer (lower panel) at
El Reno during SGP97. Estimated volumetric soil moisture from the Ensemble Moving Batch Smoother
(EnsMB) is compared to the truth as well as estimates from the Ensemble Open Loop (EnsOL) and the
Ensemble Kalman Filter (EnsKF).


