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1. INTRODUCTION
The Relative Operating Characteristic

Curve (ROC) measures the ability of a probabilistic
or categorical forecasting system to discriminate
between situations preceding the occurrence and
the non-occurrence of an event of interest. It has
been applied, for example, to the assessment of
the ability of ensemble forecast systems to discrim-
inate between the occurrence and non-occurrence
of precipitation accumulations over specific thresh-
olds. The ROC can be applied to any set of proba-
bilistic forecasts of a dichotomous variable from
any source.

Data used for the preparation of the ROC
for verification of short range weather element fore-
casts is usually in the form of timeseries of obser-
vations and their corresponding forecasts. The
forecasts may be probabilistic or categorical and
the observations are binary, taking the value of 1 or
0 according to whether the event occurred or not in
the valid period. The ROC measures the extent to
which observations of the event correspond to rel-
atively high probability forecasts and observations
of the non-event correspond to relatively low prob-
ability forecasts. In other words the ROC and its
associated statistics measure the separation of the
two conditional distributions of forecast probabili-
ties, conditional on the occurrence and non-occur-
rence of the event. Timing errors will in general
appear as a lower ability to discriminate occurrenc-
es from non-occurrences to the extent that the off-
set in time results in smaller separation of the two
conditional forecast distributions.

Suppose instead that the verification data-
set were to be made up of gridded forecasts at a
particular time, and corresponding observations.
Could the ROC give a quantitative measure of the
ability of the forecast to spatially discriminate the
occurrence or non-occurrence of an event of inter-
est? Would not the spatial mismatch between fore-
cast and observation also be reflected in the
measures of the separation of the two conditional
distributions?

The spatial verification problem is further
illustrated by Figure 1, which shows high resolution
lightning forecasts at 45 to 48 h range and the cor-
responding observations. It is immediately clear to
the eye that this forecast is quite good in a broad
context: The large frontal band of thunderstorms

has been well-forecast and even the smaller cell
north of L. Superior has only been missed by 100
km or so. What is not clear from the map is to what
extent the details of the lightning patterns have
been accurately forecast. Is there any meaningful
information in the details of the forecast at all? And,
at what maximum resolution is there some skill in
the forecast? Given that we have access to high
resolution forecasts and observations, it might now
be possible to answer these questions.

This paper describes some experiments in
the use of the ROC for spatial verification, to try to
answer these questions. Forecasts are of the prob-
ability of occurrence of lightning (thunderstorms)
over six hour periods, and the observations come
from the Canadian lightning detection network. The
data characteristics and processing methods are
described in the next section, followed by a de-
scription and discussion of the results obtained so
far. 

2. DATA AND EXPERIMENT
The ROC verification experiments were

carried out using forecasts of cloud to ground light-
ning occurrence, and corresponding observations
from the Canadian Lightning Detection Network
(CLDN) The basic predictand is the occurrence of
lightning within 22 to 24 km of each grid point of the

Figure 1. Example of probability of lightning fore-
cast (contours) along with its verifying observa-
tions (coloured crosses). Darker colours indicate
more frequent lightning occurrence.



Canadian operational GEM model, within a three
hour period. 

Forecasts are made for three-hour win-
dows out to 48 h. The method is MOS-CART
(Model output statistics (Glahn and Lowry, 1972)
- Classification and Regression Trees (Breiman et
al., 1984)). Predictors come from the GEM model,
and the prediction trees are based on two years
of data. Further details of the forecast technique
and its verification can be found in Burrows et al.
(2003).

The basic dataset for this experiment
consists of forecasts for 3 h intervals out to 48 h
(8 projections), twice per day for 5 summer
months of 2003, at all the grid points of the GEM
model for which lightning data is available (about
the southern 2/3 of Canada). Not all the data has
been processed as of this writing, therefore the
results shown below are selective and represent-
ative of work in progress. Further results will be
shown at the conference.   As is typical of mete-
orological datasets, the nominal sample size is
large, but the proximity of the data points in space
and time limits the degrees of freedom contained
in the dataset. Largely for convenience, but also
because of differences in the climatology of con-
vective processes, the dataset was divided into
east and west domains for the evaluation.

The first step of the assessment was to
calculate the ROC for single cases, using fore-
casts from all the grid points in the domain as the
sample, then to plot the ROC area values as a
function of time. This would give an idea of the
variability of the ROC over a fixed domain from
one day to the next. Each ROC was fitted using
the normal-normal model, which assumes that
the conditional distributions are transformable to
normal by means of a monotonic transformation
(Swets, 1986). The advantage of this approach
over the empirical ROC is that the areas obtained
are more consistent from one case to another
(Wilson, 2000). It would be expected that a rela-
tively high ROC would be associated with a fore-
cast map where the areas of high probability
match the locations of the storm locations better
than cases where they don’t.

The second step was to use both the
ROC and the reliability table to determine the
maximum resolution at which the spatial details of
the forecast were meaningful. To examine this,
we redefined the predictand by steps, steadily in-
creasing the radial distance over which we
searched for lightning occurrences. The basic
verification was point-wise, forecasts at each

point were matched with the occurrence (1) or
non-occurrence (0) of lightning within 22 km. Ra-
dii of 25, 50, 100, 250 and 500 km were then used
to redefine the predictand. For each radius, the
probabilities at all points within that radius of each
grid point were averaged, and matched to the oc-
currence or non-occurrence of any lightning any-
where within the circular domain defined by the
radius. We also tested the maximum probability
within the domain, which should effectively allow
“near-misses” to count. That is, if a peak probabil-
ity occurs 50 km away from a lightning observa-
tion, it will count as a match for radii greater than
50 km, but not less. The sample is created by
stepping through all the grid points of the domain
for each case, using each as the center of the se-
lected domain. As the domains increase in size,
the overlap in the data increases, so we consid-
ered it advisable to carry out this part of the inves-
tigation using at least a month of data.

As the spatial criterion for matching light-
ning occurrences with peaks in the probability dis-
tribution is relaxed, one should see higher values
of the ROC area, and greater reliability, in the
sense that the forecast is becoming less demand-
ing. In the limit, with very large radii, spatial dis-
crimination is effectively removed all together,
and one is left with a measure of the forecast’s
ability to discriminate precipitation days from non-
precipitation days.

3. RESULTS
Figure 2 shows the ROC area calculated

for the eastern Canadian domain, as a daily time-
series for one month, July 2003. It can be seen
that the values of the ROC vary over quite a large
range, from a high of 0.88 on the 9th to a low of
0.65 on the 11th. 

Figures 3 and 4 are the forecast-observa-
tion maps which correspond to the maximum and
minimum ROC area respectively. Although there
is quite a lot of small scale variation in both the
forecasts and the observations, there is neverthe-
less a clear tendency for the higher probabilities
(inside the red contours) to correspond to light-
ning areas, with relatively few “false alarms” in
Fig. 3. In Fig. 4, by contrast, the areas of high
probability forecasts do not bear any clear resem-
blance to the observed lightning areas. The ROC
area for this example, 0.65, is well below the prac-
tical minimum acceptable limit for useful discrimi-
nant ability. 



. Figure 5 shows the daily ROC areas for
the month of July, again for the eastern region,
but this time, with a 500 km radius. This means
any occurrence of lightning within 500 km would
be matched to the probability forecast either aver-
aged over the whole area (dashed) or the maxi-
mum forecast probability anywhere in the area
(solid). Comparing Fig. 5 to Fig. 2, there is evi-
dence that relaxing the spatial criterion for the
forecasts results generally in modest increases in
discriminating ability, as expected. The best days
do not change much, but discrimination on the
“poorer” cases improves by a greater amount.
Therefore, the overall day-to-day variation de-
creases. Perhaps most of the skill comes from an
ability to discriminate active lightning days from
inactive days. This could be checked by compar-
ing the daily lightning frequencies with the ROC
areas.

The curve for the mean probability is very
similar to the curve for the maximum. Since the
ROC is invariant with respect to bias in probability
values, this probably means that the standard de-
viation of the probability distribution changes little
from one day to another, and therefore the differ-
ence between mean and maximum probability
varies little from one day to another.

The variation in ROC values as a function
of domain radius is shown in Fig. 6 for the western
region, for the month of July, 2003. In this case,
the maximum probability over each circular do-
main of the given radius was matched with the oc-
currence of lightning anywhere in the domain.
The domains were stepped through all the grid

Figure 2. Daily ROC values calculated over the
Eastern Canada grid for the month of July, 2003.
A horizontal line is drawn at 0.75, indicating an ap-
proximate lower limit to usable discriminant power.

Figure 3. Lightning probability forecasts (blue
contours=30% and dark red contours=75%) and
corresponding observations (green and yellow
shading) for 24h forecasts from 9 July, 2003.
ROC area for this case was 0.88

Figure 4. Same as Fig. 3, but for 11 July. ROC
area was 0.65

Figure 5. Daily ROC areas for Eastern Cana-
da, for the month of July, 2003, for probability
of lightning occurrence over circular areas of
500 km radius. Maximum probability in the do-
main (solid) and mean probability within the
domain (dashed)



points of the domain as the center point, then
pooled over the whole month of July for computa-
tion of the ROC. For Fig. 6 and the figures that fol-
low, a 6 hour time window was used. That is, the
maximum of the two three-hour probabilities was
chosen as the forecast and matched with occur-
rences in the six hour period. This is essentially
the temporal analogue to pooling over the spatial
domains. In the temporal case and probably in the
spatial case, it would be more strictly correct to
take the sum of the probabilities over the compo-
nent periods (or points) and subtract the joint
probabilities. The latter are difficult to estimate,
but one could perhaps do so using the long term
climatology stratified by time of day and month.
This is one of many subjects for future investiga-
tion.

In Fig. 6, the curves are fitted with the
normal-normal model, and areas and separation
distances are shown in the inset table. The dis-
tances are in terms of the standard deviation of
the conditional forecast distribution for non-occur-
rences. It is that distribution which is better esti-
mated from the data. The figure shows that the
discriminant ability of the forecast improves only
slightly on average as the spatial matching is re-
laxed from 0 to 100 km. The areas are slightly
above the lower limit of useful skill, but as indicat-
ed before, the principal source of discriminant
ability probably comes from the method’s ability to
distinguish lightning days from non-lightning days
in the sample and over larger scales, rather than
from the ability to correctly determine the location

of the lightning on a specific day to within 100 km.
The fact that the ROC area for a 100 km radius is
only slightly higher than for the individual point
forecasts supports this hypothesis. 

Although this paper is mainly about appli-
cation of the ROC to spatial forecasts, made pos-
sible by access to both forecasts and
observations at high resolution, we turn now brief-
ly to verification of the same July set of forecasts
using the reliability diagram. While the ROC re-
lates to the likelihood-base rate factorization of
the joint distribution of observations and fore-
casts, the reliability table refers to the other factor-
ization, called calibration-refinement by Murphy
and Winkler (1987).

The reliability table shows that none of
the forecasts are reliable. There is a tendency to
underforecast the lower probabilities (below 15%)
and a tendency to overforecast the higher proba-
bilities at all radii. The point forecasts show prac-
tically 0 resolution (the curve is nearly horizontal),
but the resolution does tend to increase as the
matching radius is increased. At 100 km, the high-
er probabilities are still substantially overforecast,
but there is a tendency for the reliability curve to
parallel the 45 degree line, which means that
these forecasts could be calibrated with a simple
constant offset in the probabilities. Despite this
tendency, the actual reliability component of the
Brier Score tends to rise slowly (worse because of
the negative orientation). Most likely this is due

Figure 6. ROC curves for July lightning proba-
bility forecasts, for point (solid), 25 km (dash),
50 km (dot), and 100 km radius (dash-dot).
See text for further explanation.

Relia    Res     BSS
.077     .016   -32.4
.090     .036   -21.2
.107     .065   -12.0
.117     .106    -2.4

Figure 7. Reliability table for July probabilistic
lightning forecasts, 24-h projection, for western
Canada, for occurrences within domains of radi-
us 0, 25, 50 and 100 km. Horizontal lines show
the sample climatological frequency of occur-
rence for each radius. The reliability (relia), res-
olution (res) components of the Brier score, and
the Brier Skill Score (BSS) are shown for each
radius.



the effect of changes in the forecast frequency
distribution as the radius increases. (Fig. 8). The
resolution component rises faster, which more
than offsets the negative effect of the decreasing
reliability, and thus the Brier Skill Score goes up.
(We have used the Brier Skill Score because
changes in the uncertainty component of the Brier
Score, due only to differences in the climatologi-
cal frequency of occurrence of lightning in the
sample, make it difficult to compare Brier scores.)
This is perhaps the most positive result so far:
With calibration, these forecasts, interpreted at
100 km resolution, might produce useful guid-
ance. In reality, the ability to predict with some
skill the occurrence of lightning within 100 km, 24
h in advance would be significant.

4. Discussion
This paper describes some work in

progress to evaluate the maximum resolution at
which high resolution statistical lightning fore-
casts contain useful skill. More investigation is
needed before we will be able to answer that
question. In addition to testing the ROC on differ-
ent combinations of spatial and temporal resolu-
tions, we will evaluate changes as a function of
projection time, and evaluate different stratifica-
tions of the data for computation of the ROC. It
might be worthwhile to investigate ways of esti-
mating the joint probabilities of lightning occur-
rence, both for adjacent projections and for
adjacent grid points, in order to account for the
lack of independence in the dataset and to enable
the estimation of probabilities over larger spatial
and temporal domains.

If the results answer the questions posed
at the end of the introduction with some clarity,
then the next step would be to go back and rede-

velop the statistical equations for the highest res-
olution at which skilful forecasts can be obtained,
using smoothed or otherwise processed model
predictors. This way, we can be sure to extract the
maximum usable resolution from the operational
models for statistical weather element prediction.
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Figure 8. Distribution of 18-24-h probability
forecasts of lightning occurrence, western
Canada, July, 2003, for matching radii of 0, 25,
50 and 100 km.




	2.8 SPATIAL VERIFICATION USING THE RELATIVE OPERATING CHARACTERISTIC CURVE
	Laurence J. Wilson and W. R. Burrows Meteorological Service of Canada, Dorval, Québec
	1. INTRODUCTION
	Figure 1. Example of probability of lightning forecast (contours) along with its verifying observ...

	2. DATA AND EXPERIMENT
	3. RESULTS
	Figure 2. Daily ROC values calculated over the Eastern Canada grid for the month of July, 2003. A...
	Figure 3. Lightning probability forecasts (blue contours=30% and dark red contours=75%) and corre...
	Figure 4. Same as Fig. 3, but for 11 July. ROC area was 0.65
	Figure 5. Daily ROC areas for Eastern Canada, for the month of July, 2003, for probability of lig...
	Figure 6. ROC curves for July lightning probability forecasts, for point (solid), 25 km (dash), 5...
	Figure 7. Reliability table for July probabilistic lightning forecasts, 24-h projection, for west...
	Figure 8. Distribution of 18-24-h probability forecasts of lightning occurrence, western Canada, ...

	4. Discussion
	5. References
	Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone, 1984: Classification and Regression T...
	Burrows, W. R., Colin Price, and L. J. Wilson, 2003: Statistical models for 1-2 day warm season l...
	Glahn, H. R. and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather...
	Murphy, A. H. and R. L. Winkler, 1987: A general framework for forecast verification. Mon. Wea. R...
	Swets, J. A., 1986: Form of empirical ROC’s in discrimination and diagnostic tasks: Implications ...
	Wilson, L. J., 2000: Comments on “Probabilistic predictions of precipitation using the ECMWF ense...



