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1. Introduction.   
 
Model Output Statistics (MOS) have been used to derive 
forecasts of surface weather parameters from numerical 
weather prediction (NWP) models for over 30 years.  
Following the pioneering work of Glahn and Lowry 
(1972), the MOS technique determines optimized 
relationships between parameters predicted by a NWP 
model and desired forecast quantities.  Multivariate 
linear regression is the most commonly used statistical 
technique to determine the relationships, but other 
techniques such as generalized additive models 
(Vislocky and Fritch, 1995) and logistic regression for 
predicting discrete phenomena (Glahn et al, 1991) have 
been used amongst others.   
 
MOS serves two primary purposes.  First, the MOS 
technique provides forecasts of quantities that may not 
be explicitly predicted by the model.  Examples include 
precipitation type forecasts and probabilistic forecasts of 
precipitation, thunder, fog, etc. from the deterministic 
NWP data.   
 
The second purpose of MOS is to reduce the mean error 
of the raw model forecasts.   MOS improves over the raw 
model data by two mechanisms:  bias removal and 
statistical correction.   The statistical correction is 
achieved when systematic errors in the model forecasts 
occur relative to the forecast parameters.  For example, 
MOS can improve temperature forecasts in a 
circumstance where the model tends to predict 
temperatures that are too cold on cloudy days and too 
warm on sunny days. 
 
The ability of MOS to provide statistical corrections 
depends on the ability of identify significant model-
observation correlations. In order to do so, such 
correlations must be larger than those that may arise 
due to the random, stochastic noise inherent in the 
forecast system.    As NWP models have improved over 
the decades, both the systematic and stochastic errors in 
the model have been reduced.  However, it is likely that 
the stochastic errors have not decreased as quickly as 
the systematic errors since many of the stochastic errors 
are from non-meteorological/modeling sources (e.g. 

observation errors).  These external errors are not 
reduced by improvements in the NWP model. Assuming 
the systematic errors of the model forecasts have 
reduced faster than the stochastic errors, then it is 
increasingly difficult to find statistically significant 
relationships between the forecast data and 
observations.   This implies that either (a) the dataset 
used to derive the MOS relationships must be longer in 
order to obtain forecasts with equal statistical 
characteristics or (b) the fractional improvement of the 
MOS forecasts over the raw NWP model data must 
decrease.  As NWP models are under near constant 
revision, using longer periods of data to develop 
regression solutions is not always warranted.  Therefore, 
it seems reasonable to speculate that the fractional 
improvement of MOS forecasts over raw NWP data 
might indeed be decreasing.  
 
Today, the National Weather Service routinely produces 
MOS forecasts based of the GFS (MAV and MEX MOS) 
ETA and NGM NWP models.  Recent skill scores show 
that these NWS MOS products continues to provide 
improved forecasts over raw model extract (see e.g. 
http://205.156.54.206/tdl/synop/results.htm for current 
NWS statistics), although no recent comprehensive 
study of such is known.  Further, it is not known if the 
measured improvement is derived mostly from either the 
bias correction or statistical correction or both. 
 
It is the purpose of this study to ascertain whether or not 
statistical correction (as opposed to bias correction) of 
NWP model data should continue to play a material role 
in the MOS process of improving the NWP forecasts.   If 
statistical correction is found not to be substantial, then 
one would question if a sophisticated regression-based 
MOS system is still needed. 
 
 
2.  Formulation of Problem 

 
The multivariate linear regression approach to MOS 
forecasting of parameter F uses an equation of the 
form 
 
             FMOS = A + c1*X1 + c2*X2 + …… cnXn               (1) 
 

http://205.156.54.206/tdl/synop/results.htm


Where A is the intercept, ci are the regression 
coefficients, Xi are the predictors and n is the number 
of predictors used in the equation.  The predictors are 
usually values extracted from the NWP model, but in 
the case of NWS MOS products can also include 
recent observations and climatological values.   
 
Mao et al. (1999) used an alternative MOS formulation 
in which the regression is used to predict corrections 
to the raw model’s forecast rather than forecast the 
particular value directly.  This formulation is equivalent 
to forcing the regression to contain the model’s raw 
forecast as a predictor with a coefficient of 1, i.e.   
 

         FMOS – FNWP = A + c1*X1 + c2*X2 + …… cnXn           (2) 
 
(after moving the model’s forecast term FNWP to the 
LHS) where the terms A, ci and Xi are defined as in (1) 
but generally have different values in practice.  The 
LHS of (2) represents a regression-based correction to 
the NWP’s model forecast of F.  Mao et al. referred to 
this term as the model calibration.   

 
For our experiments, we used multivariate, least-squares 
regression to find the predictors and coefficients in (2).  
The regression is done against the errors in the NWP 
model’s forecast rather than against the observations of 
the forecast variable.  For this reason, we refer to this as 
Regression Against Model Error or RAME and hence 
write (2) simply as 
 
           FRAME = A + c1*X1 + c2*X2 + …… cnXn                        (3) 

 
The term A in (3) has two separate components: the 
mean model error in forecasting F and the intercept of 
the regression.  These two terms can be treated and 
computed separately: 
 
        FRAME = Ae + Ai + c1*X1 + c2*X2 + …… cnXn                (4) 

 
Where Ae is the mean model bias and Ai is the 
regression intercept.    To facilitate our analysis, we split 
the terms in FRAME, rearrange (4) and simplify as: 
 
                     FMOS = FNWP + Ae + FREG                                       (5) 
 
where FREG represents the contribution due to regression  
 
              FREG= Ai + c1*X1 + c2*X2 + …… cnXn                      (6) 
 
The purpose of this study is to assess the relative 
contributions of the terms in (5) to the value of the MOS 
forecast.  We do so incrementally, by first assessing the 
error in the model forecast FNWP, and then looking at the 
reduction in error by the terms Ae and FREG 
subsequently. 
 
When extracting forecast values from the NWP model, 
some simple algorithms have been applied to the model 
data depending on the forecast variable.  For the 
variables studied here, the following algorithms were 
applied: 

 
(a) 2 m temperature:  Corrected from NWP 

elevation to actual station elevation using a 
lapse rate dependent on the model’s lapse 
rate in the boundary layer 

(b) Probability of Precipitation:  A simple logistic 
function based on 1000-700mb mean RH and 
total precipitation. 

(c) 10 m wind speed:  No algorithm applied. 
 
By comparing the skill of bias-corrected forecasts 
extracted from the NWP model these using simple 
extraction algorithms to that improved upon using 
regression we are assessing whether or not 
“intelligent” forecast extraction from the NWP data is a 
sufficient means to derive an optimal forecast from the 
model, or whether a more rigorous regression process 
is needed. 
 
 
 
3.  Experimental Methodology 

 
To solve for FREG in (5), we follow the dynamic-MOS 
approach discussed by Neilley et al. (2001).   We 
collect a recent history of observation and model data 
for each forecast site.  About 150 predictors are 
extracted from the model for use overall, of which 
about 35 are made available to the regression engine 
for each individual forecast variable. 
 
For these experiments, model data were extracted 
from the 0000 UTC runs of the NCEP GFS model.  We 
used forecasts from the 1 deg resolution output of this 
model, which are currently available from NCEP 
through day 8 of the forecast period.   Data were 
collected from January through June 2003.  Data from 
the first 100 days of this period were used to derive 
regressions (i.e. Eq. 6) and model biases (Ae), while 
the remaining days were used as an independent 
sample to evaluate the results.  Eighty of the largest 
cities in the continental U.S. were used as forecast 
sites in this study.  Individual experiments 
(regressions, biases, etc.) were computed for each 
forecast time of the day (00, 03, 06, …. 21 UTC) but 
results were aggregated over all times. 
 
A series of experiments was conducted for each 
forecast variable, in which a minimum allowable value 
of the adjusted R-squared parameter (DeVore, 1982) 
was imposed on the regression.  The threshold was 
systematically increased from 0.1 to 0.7 and individual 
results tabulated.  When the best regression from the 
training dataset did not have an adjusted R-squared 
value that exceeded the imposed threshold, no 
regression was selected and the term FREG was set to 
0 in (5).  Results were stratified as a function of the 
minimum threshold.  For comparison purposes, a full 
regression forecast of F was also computed in a 
manner similar to standard MOS applications.  This 
allows us to ascertain whether or not the formulation of 
(5), and in particular, the requirement that the 



coefficient on the direct model extract term be 
uniformly 1 significantly affected the results. 
 
Results were derived from applications of the 
regressions and biases computed from the training 
dataset to the subsequent ~50 days in the dataset.  
Separate results were computed for each forecast 
variable (2 m temperature, probability of precipitation 
and wind speed) and for each day into the forecast 
period (1-8).  Here we show results for Day 2 
(tomorrow) and aggregated over all days.   
 
For each forecast made, an error was computed.  
Mean, mean absolute, and root mean square errors 
were computed over the entire validation period.  Here 
we focus on the RMS errors as these sufficiently 
characterize the broader set of measures.  A number 
of supporting statistics were computed and are 
presented below. 
 
 
 

2 m Temperature (C) 
Days 1-8 

Forecast Type Adj R2 RMSE %
FNWP  2.96  

FNWP + Ae  2.76  

FNWP + Ae + FREG 0.1 3.99 99
FNWP + Ae + FREG 0.2 3.96 96
FNWP + Ae + FREG 0.3 3.81 89
FNWP + Ae + FREG 0.4 3.72 75
FNWP + Ae + FREG 0.5 3.22 41
FNWP + Ae + FREG 0.6 2.77 12
FNWP + Ae + FREG 0.7 2.76 0 

Regular Regression  3.13  
 
Table 4.1.  The Root Mean Square Error (C) of several MOS 
2 m temperature forecast experiements For each forecast 
type, the root mean square error (RMSE) is shown.  For the 
forecast experiments that include a regression the 
percentage of time that a regression that exceeding the 
minimum allowed adjusted R2 value is listed. 
 
 
 
 
4.  Results 
 

4.1 2 m temperature.  Table 1 shows the 
results of the various 2 m temperature forecast 
experiments averaged over all forecast days.  The 
best performing forecast method in this case (based 
on the RMSE) was the bias-corrected model extracted 
temperature forecasts.   The bias-correction reduced 
the error by about 8%.  All attempts to improve the 
forecast skill relative to the bias-corrected model 
forecasts yielded worse results.    Only for the cases 

with a relatively strict adjusted R2 values greater than 
0.6 did the results approach that of the bias-corrected 
model forecasts.   However, in those cases, a small 
fraction (12% or less) of the cases actually had a non-
zero regression computed.  We note that the RMSE of 
the regular regression method yielded a result 
somewhat worse (3.13 C) than even the raw model 
forecasts (2.96 C). 
 
 
 

2 m Temperature (C) 
Day 2 

Forecast Type Adj R2 RMSE % 
FNWP  2.44  

FNWP + Ae  2.34  

FNWP + Ae + FREG 0.1 2.54 100 
FNWP + Ae + FREG 0.2 2.54  100
FNWP + Ae + FREG 0.3 2.53 88 
FNWP + Ae + FREG 0.4 2.61 58 
FNWP + Ae + FREG 0.5 2.66 50 
FNWP + Ae + FREG 0.6 2.31 21 
FNWP + Ae + FREG 0.7 2.34 0 

Regular Regression  2.28  
 
Table 4.2.  As in Table 4.1 but just for day 2 (tomorrow) of the 
forecast period. 
 
 
Table 4.2 shows similar results but for just Day 2 of 
the forecast period.  In this case, the best forecast was 
the regular regression. However, the general trends 
witnessed for days 1-8 are repeated here, with 
regression corrections to the bias-corrected model 
error generally yielding forecasts with larger errors 
than the bias-corrected model forecasts.  Only for the 
most stringent adjusted R2 threshold over 0.6 did the 
regression corrections improve the forecast quality.  
However, only 21% of those cases actually had non-
zero regressions used. 
 
 

4.2 Probability of Precipitation.  Table 4.3 shows 
the results of probability of precipitation experiments.  
The general trends shown for the temperature 
forecasts are seen again in these results.  (Scores for 
the regular regression method were not available at 
the time of publication).  The best forecasts were 
found for the bias-corrected model forecasts.  In this 
case, the bias correction added almost no value 
(RMSE decreased about 0.005) over the direct model 
extract.    All attempts to improve the model forecasts 
using a regression correction yielded forecasts with 
lower skill.  Results for individual days (not shown) 
have results with trends identical to the day 1-8 mean 
results shown. 
 



 
6 hr Probability of Precipitation  

Days 1-8 
Forecast Type Adj R2 RMSE %

FNWP  0.44  

FNWP + Ae  0.44  

FNWP + Ae + FREG 0.1 0.49 89
FNWP + Ae + FREG 0.2 0.47 65
FNWP + Ae + FREG 0.3 0. 46 30
FNWP + Ae + FREG 0.4 0.44 9 
FNWP + Ae + FREG 0.5 0.44 0 
FNWP + Ae + FREG 0.6 0.44 0 
FNWP + Ae + FREG 0.7 0.44 0 

Regular Regression  NA  
 
 

Table 4.3.  As in Table 4.1 but just for days 1-8 of the 6-hr 
probability of precipitation forecasts. 
 
 
4.3 Wind Speed.  Table 4.4 shows the results using 
wind speed as the forecast variable.    These results 
are considerably different than the temperature and 
precipitation results shown earlier.  Here, the 
regressions universally reduce the error of the 
forecasts and perform best for relatively low values of 
the adjusted R2 threshold.  The skill of the forecasts 
actually decreases as the adjusted R2 value increases 
reflecting the reduced percentage of forecasts in which 
no regression is computed causing the (worse) bias-
corrected model forecasts to be used soley.  The 
individual day’s (not shown) results mirrored the trends 
seen in the days 1-8 means shown. 
 

Wind Speed ( m s-1)  
Days 1-8 

Forecast Type Adj R2 RMSE % 
FNWP  2.14  

FNWP + Ae  2.24  

FNWP + Ae + FREG 0.1 1.93 100
FNWP + Ae + FREG 0.2 1.93 100
FNWP + Ae + FREG 0.3 1.93 93 
FNWP + Ae + FREG 0.4 1.99 71 
FNWP + Ae + FREG 0.5 2.11 36 
FNWP + Ae + FREG 0.6 2.19 9 
FNWP + Ae + FREG 0.7 2.23 3 

Regular Regression  NA  
 
Table 4.3.  As in Table 4.1 but just for days 1-8 of the wind 
speed (m s-1) forecasts. 
 
 

5. Summary and Discussion. 
 
In this study, we have attempted to determine the 
relative skill of the various components of a MOS 
forecast and in particular to determine when 
multivariate linear regression adds value to the 
forecasts compared to more simple model extract and 
correction techniques.   We have compared various 
measures of skill in forecasts derived from days 1-8 of 
the NCEP GFS model, and focused on the RMSE 
results here. 
 
Based on the results of our experiments, we have 
concluded that multivariate least-squares regression 
does not improve the quality of forecasts in many 
circumstances.  The results appear strongly 
dependent on forecast variable with 2 m temperature 
and probability of precipitation forecasts showing the 
least value in the regressions while the regressions 
had the most value in wind speed forecasts.   
 
The value of least-squares linear regression is not 
obvious as a general technique to improving NWP 
model forecasts.  Our results imply that in developing 
a general NWP model output post-processing system, 
using simple algorithms and bias-correction 
techniques often can yield forecasts that are 
comparable if not superior to forecasts derived from 
the more complex regression system.    We speculate 
that this conclusion is the result of the fact that as 
NWP model forecasts are becoming increasing skillful, 
it is becoming increasing difficult for statistical 
methods to find consistent correlations between the 
model data and observations. 
 
We note that the regression method used here relied 
on a relatively small training dataset (100 day) 
compared to the size often used in NWS MOS 
regression systems.  It is not clear if a longer training 
dataset would yield results more favorable for the 
regression technique.  One caveat of using a longer 
training dataset is the lack of stability in the NWP 
model over the years making the applicability of 
regressions derived from long datasets unclear. 
 
Finally we note that the NWS often uses climatological 
predictors in formulating their MOS equations.  We did 
not consider such factors here.   As NWP solutions 
tend to diverge from reality during the later portion of 
the forecast period, forecasts that are near the 
climatological norm will tend to yield RMS errors that 
are lower.  Hence, it is a common artifact of NWS 
MOS forecasts that they trend towards the 
climatological norm as the forecast period progresses.  
If we had used climatological predictors in our 
regression system here, we would have expected 
considerably better results for the regressions.  
However, including the climatological predictors 
dampens the magnitude of events predicted in the 
NWP model which can lower the “value” of the MOS 
forecasts even if their RMS errors are reduced. 
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