9.1

ANAGRAM—A MODULAR JAVA FRAMEWORK

FOR HIGH-PERFORMANCE SCIENTIFIC DATA SERVERS

Joseph Wielgosz*
Center for Ocean-Land-Atmosphere Studies

1. SUMMARY

Anagram is a prototype framework designed to ease the
development of the diverse data servers which will be
needed as the community moves towards distributed data
processing. It provides a collection of reusable
components that address the needs common to high-
performance scientific data servers. In particular,
Anagram can greatly facilitate the development of new
servers that support the OPeNDAP (a.k.a. DODS)
subsetting protocol (Davis and Gallagher, 1999) on a
diverse range of back-end data storage formats.

Developed at COLA (the Center for Ocean Land
Atmosphere Studies, a center under the Institute for
Global Environment and Society), Anagram is the basis
for version 1.2 of the GDS (GrADS Data Server), which
currently handles over 2 million hits per month at various
sites (Wielgosz, Doty, and Adams, 2002)

This paper will explain the motivations for a common
server framework, describe the functionality provided by
Anagram's modular design based on Java, XML, and
OPeNDAP (the Open Source Project for a Network Data
Access Protocol), and explain how to extend and adapt it
for specific applications, such as developing a new flavor
of OPeNDAP server.

The Anagram home page is
http://www.iges.org/anagram/

2. BACKGROUND
2.1 Distributed data systems

Anagram is aimed at easing the current transition towards
distributed systems for managing geosciences data.

At COLA and elsewhere, the quantities of data in storage
are growing far faster than the capacities of

the networks used to access them. As a result, it is
becoming increasingly impractical to transfer datasets
from one machine to another for analysis, comparison,
and other kinds of reprocessing. Nevertheless,
experience at COLA indicates that for many scientists,
the ability to work with data in numeric form, using their
own tools of choice, is indispensable.

Distributed data systems make this possible by allowing
scientists to work directly with datasets stored remotely,

* Joseph Wielgosz

COLA, 4041 Powder Mill Road, Suite 302
Calverton, MD 20705

joew(@cola.iges.org

either over a local network or over the Internet— for
example, retrieving precise subsets instead of entire intact
data files, or sending data-intensive analysis tasks to be
run on a data server, with only the final results sent to the
client. This is achieved by the adoption of common
network protocols and usage conventions, which make it
possible for diverse geoscience-oriented client tools and
data servers, developed by different communities and
institutions, to interoperate.

A distributed data system of some kind is now becoming
a standard component of data-intensive research projects.
This situation is leading to the development of a wide
variety of data server software, to form bridges between
the various protocol interfaces of distributed data
networks, and site-specific or community-specific codes
used to access and analyze particular data formats.

However, resources available for developing and
maintaining infrastructure-related software are often very
limited. A reusable data-server framework could help the
community to make the best possible use of these
resources by significantly reducing the development time
required for the support of a new data format or protocol.

2.2 Data servers and web portals

It is worth emphasizing that the task of a data server, as
discussed here, is distinct from that of a web portal
system. The emphasis in a web portal system is on
providing a feature-rich, human-oriented, user interface
to one or more data archives, by generating dynamic web
pages and images, and providing customized file
downloads.

In contrast, a data server’s main purpose is to support
reliable machine-to-machine interactions, by exchanging
encoded protocol requests and numeric data. The client
may be a desktop application, an automated system
driven by scripts, or another data server. For example,
web portal systems are often primary “clients” for data
servers, as in the case of the Live Access Server
developed at the NOAA Pacific Marine Environmental
Laboratory (PMEL), or the Ingrid system at Columbia
University’s International Research Institute for Climate
Prediction - both of which provide a unified web-based
interface to data from numerous OPeNDAP servers
across the Internet.

2.3 What makes a good scientific data server?

Anagram’s design is influenced by several basic
requirements for scientific data servers: adaptability to

diverse network data protocols and back-end data storage
systems, ease of deployment, high throughput, and
stability.

In order to be useful beyond the short term, data servers
will need to adapt to new protocols. While the World
Wide Web has certainly changed a great deal since its
creation, the protocols for distributed data systems are in
a state of even more rapid evolution. Work is continuing
on existing protocols such as OPeNDAP, THREDDS
(Thematic Real-time Environmental Data Distributed
Services), GridFTP, and others, to address newly
identified needs. New geoscience oriented protocols,
based on emerging standards such as the Web Services
stack (SOAP, WSDL, UDDI, and so on), and the
OpenGIS specifications, will likely play a large role in
efforts to move towards the much-talked-about Grid
computing paradigm.

An extremely wide range of data formats and analysis
tools are used in geoscience data processing, with new
ones appearing continuously. Each has its own desirable
features, areas of specialization, and established user
community. Because of this, efforts at broad
standardization have not thus far been very successful.
Therefore, to achieve interoperability, data servers will
need to provide remote access to a wide range of existing
formats and tools, via shared protocols.

Ease of deployment is also an important goal. Experience
of the IT group at COLA has been that for a technology
to be successfully adopted in the geoscience community,
it is extremely helpful if it can be done incrementally. If a
new technology requires too large an investment in
learning and deployment effort, it may fall by the
wayside regardless of its technical merits. Thus data
server software is likely to see far more operational usage
if it can be conveniently deployed by non-expert users on
a variety of systems, and does not require complex
configuration or maintenance.

Lastly, performance and reliability are of particular
importance for machine-to-machine interfaces.

While human users are limited by the speed with which
they can read, click links, and so on, scripted or otherwise
automated clients can easily saturate the resources of data
servers. A data server therefore needs to be designed to
operate efficiently under conditions of heavy and
continuous use.

Human users are also able to respond adaptively to small
errors or inconsistencies. For example, if a web page
doesn’t load the first time, we might try loading it again
later, or look for the information elsewhere. By their
nature, automated systems are not as versatile. Therefore,
it is essential that each component of the system be as
reliable and predictable as possible, both in normal
operation and in its failure modes, in order for the system
as a whole to function somewhat smoothly.

While the design and implementation of Anagram is far
from fully addressing all of these four basic goals of

flexibility, deployability, reliability, and performance, it
does represent an attempt to maximize and balance them
in an operational system.

3. THE ANAGRAM FRAMEWORK
3.1 Open-source technologies: Java, XML, OPeNDAP

In order to be widely useable and adaptable, Anagram is
based entirely on free, open-source, platform-independent
technologies.

The framework is written in Java. This provides some of
the advantages of higher-level scripting languages, such
as Perl, Python, PCP, etc — automatic memory
management, built in multi-threading support, object-
oriented environment with a rich set of standard class
libraries, and minimal portability problems. At the same
time, it retains a good set of low-level byte-manipulation
routines as are found in C/C++, has a highly optimizing
compiler, and performs well under heavy loads.

All configuration files are in XML, which eliminates the
need for customized parsing routines. The Apache Jakarta
Tomcat server handles the HTTP protocol details,
connecting to the Anagram server via the Java Servlet
interface.

The current implementation is focused on supporting the
OPeNDAP data protocol, for which support is available
in both C++ and Java. The open-source Java-DODS
library, developed by the OPeNDAP group, is used to
manage subsetting operations internally, as well as for
decoding requests and encoding responses.

And of course, Anagram itself is available under a license
that allows free reuse and distribution.

3.2 Adaptable Modules

An Anagram server consists of a hierarchical collection
of Modules, each of which encapsulates a particular
subsystem and may own other Modules representing
subsystems of the subsystem. They are tied together
partially at compile-time through factory routines, and
partially at run-time through XML directives, to create a
complete functioning implementation of the framework.

This approach mirrors that of the more generalized open-
source Apache Avalon and Axis server frameworks
(Graham, et al), and is based on well-established object-
oriented design patterns (Gamma, et al). A modular
design helps to reduce coupling between unrelated code
areas, and facilitates tailoring the system to particular
needs, and extending its capabilities into new areas.

Each module has a name, and is configured by passing it
an XML fragment contained in a tag matching its name.
Thus the structure of the XML configuration file for the
server is simply a mirror of the internal module hierarchy.

Anagram request processing flow
in the GrADS-DODS Server

Tomcat C] = org.iges.anagram.Module

Anagram Server | *

* l (Mapper)HTTP request

AnagramServlet .
(2) PrivilegeMgr parsing
1 I+
* org.iges.anagram.filter.Filter Intermed.i ate
(DODSErrorService) 1 processing
AnalysisFilter
(WebErrorService)

OverloadFilter
[|
AbusecFilter

DispatchFilter

Core modules

org.iges.anagram.service.Service Services Log
(AdminService) (DASService) (InfoService)

(AsCliDataService] (DDSService] (UploadService)

(BinaryDataService) (HelpService) (XMLCatalogService)

] V Data Source
org.iges.anagram.Tool
(GradsTool)
(DODS) (' Importer) (Uploader)
(Subsetter) (Extracter)
(Invoker)

vt
external GrADS
process

Each Module also has a specialized interface for

performing its particular task. Modules exchange small, 3.3 Layered request processing: Filters, Services, and
lightweight objects in order to accomplish their tasks. Tools

The server is started and stopped using a set of portable In order for the framework to easily accommodate new
shell scripts, which manage the Java process and respawn protocols, and diverse analysis and data access tools, the

it if necessary. system is divided into two major layers: a protocol layer,

and a data-format layer. In addition, a collection of core
modules acts as a broker between the two, and provides
access to system resources (see Figure 1).

The core modules include a Catalog, which maintains the
list of data holdings in the form of a hierarchical
collection of generic DataHandle objects; a Store, which
provides access to a temporary working area on disk; and
a Log, which handles multi-level configurable logging.

The protocol layer consists of a Mapper, a PrivilegeMgr
(privilege manager), and a collection of Filters and
Services. Each Request is encapsulated as a
ClientRequest object when it is received through the
Servlet interface. The Mapper module then assigns the
incoming request to the appropriate service.

The PrivilegeMgr also assigns a privilege level according
to IP address. Each privilege level maps to an XML
fragment specified in the configuration file. Each Module
involved in request processing will check the settings
contained in the XML fragment, to determine whether a
given operation should be permitted. This enables the
easy the addition of new security checks at arbitrary
points in the request processing chain.

After a privilege is assigned, the request is passed
through the Filters, which perform intermediate
processing. Anagram includes filters to turn away
requests when under heavy load; block individual clients
who exceed usage limits; and extract and process analysis
tasks embedded in data request URLs.

Finally, the request is dispatched to its assigned Service,
which generates a response. The Service has direct
access to an open network socket, so that responses can
be streamed back to the client as they are generated. This
plays a key role in the performance and scalability of the
server. The system memory needed by an open
connection remains small and constant, regardless of the
size of the response. Thus the server can easily handle
many dozens of simultaneous connections, possibly
streaming many megabytes of data to each one, without
running out of system resources. An additional benefit is
that the client begins receiving data for a large request
immediately, without having to wait for the entire request
to be marshaled on the server.

Error handling is done using the Java exception
mechanism. If an exception is thrown at any time during
processing, both the request and the exception are passed
to an ErrorService, which sends an error response in a
form appropriate to the protocol.

Anagram currently includes Service modules for the
complete DODS/OPeNDAP v2.0 protocol, as well as
HTML and XML-based interfaces for browsing the
server catalog, basic URL-based remote administration,
and data upload using the HTTP POST method.

The process of adding new Filters and Services to the
system will be described in the next section.

When a client makes a request to access the server’s data
holdings, the assigned Service makes the necessary calls
to the Tool module. The Tool interface provides a
wrapper around the entire data-format-specific portion of
an Anagram server. Developing a data server to access a
particular data format or storage type is simply a matter
of writing a Java class or set of classes that implement
this interface.

One responsibility of the data-format layer is to provide
the Catalog with DataHandle objects, representing the
data holdings of the system. It is up to the data-format
layer how these are generated and what they represent —
they may represent local resources such as files or
database tables, specified by configuration file directives;
or they may be the result of processing client upload or
analysis requests. Each DataHandle contains generic
information used to generate directory listings and
manage storage, as well as a separate, freeform object
which can contain any fields the data-format layer will
use in later processing.

The data-format layer also handles metadata and
subsetting requests, either by returning JavaDODS
objects for a given DataHandle, or by streaming
formatted binary, ASCII or HTML directly to an open
network socket for efficiency.

How these tasks are accomplished is entirely up to the
data-format layer. This provides adaptability to the many
different data storage formats and systems in use, and
also allows for implementation-specific performance
optimizations for common requests, particularly those
that are data-intensive.

4. USAGE IN THE REAL WORLD
4.1 An operational Anagram server: GDS 1.2

The GrADS Data Server 1.2 consists of the standard
Anagram distribution combined with an implementation
of the data-format layer based on the GrADS (Gridded
Analysis and Display System) analysis package (Doty
and Kinter, 1995).

COLA has been running the Anagram-based GDS 1.2
operationally since spring of 2002 at multiple sites. Our
most heavily used servers are currently handling over
600,000 data requests per month, and the server has been
successfully deployed at a number of other sites including
NOAA centers such as CDC, GFDL, NCDC, and NCEP;
NASA/GSFC; and NCAR/UCAR. Current usage
statistics are available at http://www.iges.org/stats/gds.

GDS 1.2 is also in use in the Land Information System
(LIS), a high-resolution distributed land-modeling
experiment. The server is being used to distribute forcing
data inputs to a cluster of over 200 Linux-based compute
nodes in real time, as well as providing a primary means
of access to the final LIS model outputs.

The GrADS-based implementation of the data-format
layer generates DataHandles either from GrADS
descriptor files or from supported self-describing file
formats such as NetCDF, HDF 4, and WMO GRIB and
BUFR.

The generic field of the DataHandles is used to keep track
of whether datasets contain gridded or station data, which
of the four differently-linked GrADS binaries should be
used to open each dataset, and whether they are self-
describing or have a descriptor file. A number of
metadata-related directives are also stored, such as per-
dataset filters on which attributes should be passed to the
client.

GrADS is newly invoked as a separate system process for
each data request. A collection of GrADS scripts provides
an interface to the Java modules for extracting metadata,
generating subsets, and generating new datasets based on
analysis requests. The Java modules manage these
external processes with timeouts to prevent excessive use
of resources.

This technique for connecting the Java modules of the
server with an existing body of ANSI C analysis and I/O
code has proven to have a number of benefits. The server
is able to handle many simultaneous requests without any
need to modify the C code for multi-threaded execution.
The server is also protected from any potential instability
or hangs in the C code, as it runs in a separate process
that can be timed out if it doesn’t return normally. The
system has proved to port simply and smoothly to a
variety of systems, avoiding the potential complications
of using dynamic shared libraries. And of course it is not
limited to interfacing with programs written in C, but is
equally suited to FORTRAN programs, shell scripts or
any other existing means of accessing data storage.

For example, an Anagram implementation based on the
Ferret package has been developed at PMEL, which will
be used to complement the capabilities of the Live Access
Server (Rogers, Hankin and Manke 2004).

4.2 Three simple steps to using Anagram for your
project

This framework was created, and this paper written, in
the belief that there are likely to be many new ongoing
data server projects which could benefit from having a
well-developed operational framework to use as a starting
point.

Potential data-format implementations for Anagram
include servers that access relational database systems,
invoke Java libraries, external packages, or custom
FORTRAN codes to handle specialized data formats, or
even retrieve data from a non-disk storage media such as
mass stores.

Examples of new protocol support could include
generation of THREDDS catalogs, DODS/OPeNDAP
v4.0 XML messages, a SOAP/Web services interface, or

generation of custom data products such as images or
data files. The framework is currently oriented towards
HTTP as a transport, but could potentially be adapted
towards other transport mechanisms such as GridFTP as
well.

Adding a new data-format implementation is extremely
simple:

1. The first step is to implement the seven methods in the
Tool interface - data handle creation, metadata,
subsetting, and optionally analysis or uploading.

2. The second step is to compile the new Tool subsystem
in to a Java Archive (jar) file and include it in the
compilation script.

3. The third and final step is to edit the XML
configuration file for the Anagram web application,
which contains text resources such as the server name and
home page for user help, as well as the class name to load
for the Tool implementation. The new server
implementation is then ready to run.

Adding new Services and Filters is almost as simple. The
steps are almost the same as for adding a new data-format
— first write a new implementation of the Service or Filter
interface, then add it to the server configuration, and
finally edit and rebuild the web application. The only
difference is that unlike the Tool module, which is loaded
according to the class specified in the web.xml file, the
Services and Filters are currently loaded at compile time.
Therefore, it is necessary to subclass the Mapper,
AnagramServlet, and Server classes, and replace a few
methods:

Mapper.createServices()

AnagramServlet.createFilters()

AnagramServlet.init()

Server.createModules()
with code that that loads the new Services and Filters.

Replacing core modules such as the PrivilegeMgr,
Catalog, or Store is also possible. Because these classes
are referenced directly by other Modules rather than via
generic interfaces, the new implementation must be a
subclass of the default implementation. Otherwise,
however, the process is no different.

5. CONCLUSION - A FIRST STEP

Anagram is an experiment in the development of
distributed data infrastructure in the geoscience
community, and there is much room for expanding and
improving it. Due to limitations of time, and the learning
process of creating the design, many areas exist which its
flexibility could clearly be improved without sacrificing
performance.

Some examples are the current limitation of the system to
a single Tool; the awkward means of adding new
Services (which ideally would be grouped together as
Protocols) and replacing core modules — both of which

ideally would be configured via XML; and the HTTP-
specific orientation of the core request processing classes.

The author is moving on to other projects, and thus
further development at COLA is likely to be limited to
operational maintenance for the immediate future.
However, it is hoped that if Anagram proves useful in its
current state, members of the community will be
interested in expanding its capabilities, and/or addressing
whatever deficiencies they encounter.

It is hoped that this experiment will inspire further
exploration of the potential for the use of adaptable
frameworks, based on portable, open-source
technologies, in integrating the community’s many
diverse data archives and analysis tools into a common
distributed data infrastructure.

6. RELEVANT WEBSITES

Anagram: http://www.iges.org/anagram
COLA/IGES: http://www.iges.org

GrADS: http://ww.iges.org/grads

GDS: http://www.iges.org/grads/gds

LIS: http://lis.gsfc.nasa.gov/

COLA Public GDS: http://cola8.iges.org:9191/

7. REFERENCES

Davis, E. R., and J. Gallagher, 1999: Using DODS
to Access and Deliver Remote Data, Fifteenth
International Conference on Interactive
Information and Processing Systems for
Meteorology, Oceanography, and Hydrology,
Dallas, TX.

Doty, B., and J. L. Kinter III, 1995: Geophysical
Data Analysis and Visualization Using GrADS.
Visualization Techniques in Space and
Atmospheric Sciences, eds. E. P. Szuszczewicz
and J. H. Bredekamp. (NASA, Washington,
D.C.), 209-219.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides, 1995:
Design Patterns: Elements of Reusable Object-
Oriented Software, Addison Wesley, Boston, MA

Graham, S., S. Simeonov, T. Boubev, D. Davis, G.
Daniels, Y. Nakamura, and R. Neyama, 2001:
Building Web Services With Java: Making Sense of
XML, SOAP, WSDL and UDDI, SAMS Publishing
Indianapolis, IN

Rogers, R., S. Hankin, and A. Manke, 2004: The Ferret-
DODS Server, 20th International Conference on
Interactive Information and Processing Systems
(IIPS) for Meteorology, Oceanography, and
Hydrology, Seattle, WA.

Wielgosz, J., B. Doty and J. Adams, 2002: The GrADS
DODS Server: An Open-Source Tool for Distributed
Data Access and Analysis, Seventeenth International

Conference on Interactive Information and
Processing Systems for Meteorology, Oceanography,
and Hydrology, Long Beach, CA.

Wielgosz, J., B. Doty, J. Gallagher, and D. Holloway,
2001: GrADS and DODS, Seventeenth International
Conference on Interactive Information and
Processing Systems for Meteorology, Oceanography,
and Hydrology, Albuquerque, NM.

