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1. INTRODUCTION

Forecast uncertainty is due to imperfect
knowledge of the initial conditions and model
errors. So far, most operational medium-range
global ensemble forecasts (Molteni et al. 1996;
Toth and Kalnay 1993, 1997) focus on the
generation of initial perturbations running a single
deterministic model. The deficiency of these
ensembles is evident in the fact that observations
often fall outside the range of ensemble values
with a margin and frequency that cannot be
explained by estimates of observational error,
especially at longer forecast lead times. Besides
yet imperfect ensemble representations of initial
condition errors, the neglect of model errors
(Smith 2001; Houtekamer et al. 1996) and the
internal stochasticity is no doubt responsible for
this non-ideal performance.  The error in a single
deterministic model inevitably exists due to its
finite temporal and spatial resolution.  While the
developing of stochastic prediction models based
on stochastic parameterizations of sub-grid scale
processes could provide a first principle basis for
accounting for model error, it is doubtful that such
an approach would ever make full account of all
types of errors.  In other words, there are always
residual errors missing from an ensemble.

To account for these residual errors, one
way we can try is to add statistical perturbations to
each ensemble member in the post-processing.
This idea is first tried by the best member dressing
technique by Roulston and Smith (2003).  In the
best member dressing method, the statistical
perturbations are from archived historical best
member errors.  The best member is defined as
the closest to the verification in the full space
including all spatial locations, all quantities and all
forecast lead times. Hereafter we call it the true
best member. Our first concern about this best
member dressing method is that since for an
ensemble system, each member should have
similar error statistics, one should not expect the
errors of the first, the second and the even the
worst member to be significantly different
measured in the full space. Secondly, identification
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of the best member in the full space is time
consuming. So one would choose a subspace to
estimate which member is the true best member.
The selection of the best member and thus the
performance of the dressed ensemble are critically
dependent on the choice of the subspace.  Third,
Roulston and Smith (2003) shows that using a too
low dimensional space will very likely misidentify
the true best member and it will underestimate the
errors associated with each forecast. But there is
no proof that the error statistics of the true best
member or practically the best member identified
from a high dimensional space will provide right
ensemble spread, that is, no under-dispersion or
over-dispersion. Our simple experiment with
univariate random number generators reveals that
the best member dressing method generally does
not produce ensemble whose rank histogram is
flat. It could be overdispersive or underdispersive
depending on the undressed ensemble size and
relationship of the undressed ensemble variance
and the true ensemble mean error variance.

With these questions in mind we propose
another dressing kernel in this paper.  The basic
idea is to choose the statistical perturbations that
will make the dressed ensemble members
indistinguishable from the verifications under the
second moment measurements. The next section
provides the mathematical expression for this
dressing kernel. In sections 3 we describe the
experiments we used to test this dressing kernel
and reveal the problems of the best member
method. In section 4 we show the comparison
results measured with different tests. In section 5
we further discuss these results and in section 6
we summarize the results.

2. THE NEW DRESSING KERNEL

The distribution from which the imperfect
ensemble is drawn is given by an infinite number
of realizations of the stochastic process,

  
              'ξξx +=f ,                            (1)

where fx  is a multidimensional random vector. ξ
is its mean and 'ξ  is its deviation from its mean.



The covariance of the ensemble distribution is
given by

                           
T2 ''ξξ=eΣ .                         (2)

The basic idea of the dressing technique
is to add a statistical perturbation ε  to the
imperfect ensemble (1). Mathematically the
dressed ensemble members are defined to draw
from the stochastic process
                         εξξy ' ++=f .                       (3)
The basic question in the dressing technique then
is how to choose ε .  In the best member method
(Roulston and Smith 2003), ε  is obtained from
archived historical best member errors through
resampling.  In this paper we introduce a new
method where ε  is chosen aiming to make our
dressed ensemble members indistinguishable
from the verification, tz , under second moment
measurement.  Mathematically, we require
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Substitute  f
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Then, we obtain
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So if we obtain covariance of ε  from (7) and
parameterize a distribution, then we can use
random number generator to generate the
dressing perturbations.  But for each individual
forecast, there is only one realization of verification

tz . So we have to relax our goal to make our
dressed ensemble members indistinguishable

from the verification on, for example, a seasonally
averaged basis. In other words, we use forecasts
and verifications from a season to calculate the
first term on the right side of (7) and use the
seasonally averaged ensemble covariance to
replace the second term. Mathematically,
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where s⋅  means seasonal average. Thus the

statistics of the dressing perturbations are the
same for all forecasts over a season. This property
is the same as the best member method.

Note In the above analysis, ξ  refers to
the mean of the underlying distribution from which
the ensemble is drawn. For finite ensemble sizes,
it will not be equal to the mean of the ensemble.
Similarly, 2

eΣ  does not give the covariance of a
finite ensemble about its mean, it gives the
covariance of the distribution from which the
ensemble was drawn. However it can be proved
that for a configuration of our following experiment
with a whole season’s (3 months) 16-member
ensemble runs, the two terms ξ  and 2

eΣ  can be
approximated by the finite ensemble mean and
finite ensemble covariance within 10% tolerance.

Note the covariance matrix given by (8),
denoted as Q  hereafter, is real and symmetric but
not positive definite. We design the random
generator in the following way. We first perform
eigenvalue decomposition on Q ,

                          TEEQ Ω= ,                             (9)
where columns of E  contain the eigenvectors and
the diagonal matrix Ω  contains the corresponding
eigenvalues. Positive eigenvalues indicate that on
the directions of the corresponding eigenvectors
the ensemble is underdispersive and thus
dressing is necessary. Whereas for negative
eigenvalues, on the corresponding eigenvectors
the ensemble is overdispersive already and hence
dressing is prohibited in these direction. Based on
this argument, we define the random generator as
             +++ +++= kkxxx eeeε �2211 ,            (10)

where +
ie , ki �1= , are all eigenvectors

corresponding to the positive eigenvalues. ix ,
ki �1= , are univariate random variables which

are parameterized as normal distributions with
mean equal to zero and variance equal to the ith



positive eigenvalue of Q , denoted as +
iω . So

mathematically,

                           += ii ωx 2 .                          (11)

Note if all eigenvalues are positive and ix ,
ki �1= , are independent to each other,

covariance of ε  defined from (10) is equal to Q
exactly for infinite samples.

Since the cost of generating an ε  is that
of generating a random vector of the same length,
practically each member of the finite ensemble
can be dressed with a very large number ofε . In
the following experiment, each dynamic ensemble
member is dressed with the same number of ε .

3. NUMERICAL EXPERIMENT

3.1 Ensemble System

To reveal the problems of the best
member method, hereafter the RS method, and
test our proposed dressing method, hereafter the
WB method, we run 16-member spherical simplex
ETKF ensemble with the NCAR community
climate model (CCM3) initialized with
NCEP/NCAR reanalysis.  For details on the ETKF
ensemble, please refer Bishop et al. (2001), Wang
and Bishop (2003) and Wang et al. (2003).
Different from the previous experiments where
only the simulated rawinsonde observations are
considered, simulated satellite observations are
also included in the observational network in the
current ETKF ensemble run.

3.2 Verifications

The verifications are NCEP/NCAR
reanalysis located on the reanalysis grids that are
nearest to the rawinsonde sites. The variables that
we are interested in dressing and verifying are
500-hPa U over eastern USA for each individual
forecast lead time. No temporal correlation is
considered. 14 reanalysis grids over eastern USA
are selected. The CCM3 ensemble outputs are
interpolated to these grids. The training statistics
of the bias and the dressing perturbations are from
all 10-day ensemble runs of 1999 summer. Note
before dressing the training bias is removed first.
The verification period is summer 2001.

3.3 Experiment on the RS Method

In Roulston and Smith (2003) and
Roulston (2003, personal communication), the RS

method tries to estimate the true best member
with limited number of variables. It is suggested
(Roulston 2003, personal communication) that If
practically feasible, the identification of the best
member should be made using all quantities at all
locations and all forecast lead times for which
verifications are available even if the variables of
interest are only in a small model subspace. In line
of their argument, in our experiment, although we
are only interested in 500-hPa U wind over
eastern USA, we first identify the best member by
using a quite high dimensional space, 500-hPa U
over global verification sites throughout 1 to 10
day forecast lead times.  Each sample of the best
member error is stored in a vector. When
dressing, as in Roulston and Smith (2003), each
1-10 forecast is dressed by one vector containing
1-10 day best member error.

To further reveal that in the RS method
the dressing result is highly dependent on the way
the best member is identified and to test whether
the best member should be identified in a full or
high dimensional space, we also try the
experiment where the best member is defined in a
relatively low dimensional space, 500-hPa U over
eastern USA for each individual forecast lead time.
That is, this subspace contains only those
quantities of our interest.  Forecasts from different
forecast lead times are dressed separately.

Note the norm of the distance of an
ensemble member and the verification is defined
the same way as in equation (1) of Roulston and
Smith (2003).

3.4 Experiment on the WB Method

Different form the RS method that has to
decide which model subspace is chosen to build
the statistics, in the WB method, the statistics of
ε is built according to (8) just for the variables of
interest, i.e., 500-hPa U over eastern USA (14
sites) for each individual forecast lead time. When
dressing, random vectors of length 14 are
generated by (10) and (11) for each forecast lead
time separately.

4. COMPARISON RESULTS

In this section we compare the
performance of the RS and WB dressing methods
with different measurements. In these
measurements, ensemble forecasts over the 14
sites for runs of 2001 summer are grouped
together.



Fig. 1 Rank histograms for  (a) the 16-member
undressed ETKF ensemble, (b) 32-member WB-
dressed ensemble, (c) 32-member RS-dressed
ensemble with the best member identified from the
high dimensional space defined in section 3.3 and
(d) 32-member RS-dressed ensemble with the
best member identified from the low dimensional
space defined in section 3.3.



4.1 Rank Histogram

The first test is the rank histogram (Hamill
2001). Ensemble forecasts over the 14 sites for
2001 summer runs are grouped together. We
dress each member of the 16-member undressed
ETKF ensemble with 2 perturbations to form 32-
member dressed ensembles. Figure 1(a) is the
result for the undressed 16-member ensemble
after removing the training bias. So, the undressed
ensemble is underdispersive especially for longer
forecast lead times, which is typical for a raw
dynamic ensemble.  The result for the WB-
dressed ensemble is shown in fig. 1(b). The rank
histogram for the WB method is flat throughout 1
to 10 forecast lead times, which indicates the WB
dressing technique on average provides proper
ensemble spread. Figure 1(c) is the result from the
RS method where the best member is identified
from the high dimensional space defined in section
3.3. The rank histogram indicates that through 1 to
10 day forecast lead times, this RS-dressed
ensemble is overdispersive. For the RS method
where the best member is identified from the low
dimensional space defined in section 3.3, the
result is better than that where the best member is
identified from the high dimensional space.
However it is still worse than the WB-dressed
ensemble in that it is overdispersive at 1-2 day
lead times and underdispersive at 8-10 day lead
times (fig. 1d).

Fig. 2 Brier skill score (lower score is better)
measurements for 1 to 10 day forecast lead times.

4.2 Skill Score

In fig. 2 we show the Brier skill score (Brier
1950; Murphy 1973) measurement results. In the
calculation 4 climatologically equally likely bins are
defined from 1999 summer verifications. We find
the WB-dressed ensemble performs better (lower
score is better) than the undressed ensemble
throughout 1-10 day forecast lead times.  The RS-
dressed ensemble with the best member defined
in the high dimensional space is inferior to the
WB-dressed ensemble and at short lead times, it
is even worse than the undressed ensemble. The
result from the RS dressed ensemble with the best
member defined in the low dimensional space is
close to that from the WB method.

Another skill score we tried is the
continuous ranked probability score (CRPS) by
Hersbach (2000). The comparison result (not
shown) is similar to that of the BSS.

Fig. 3 Difference between the seasonally
averaged ensemble mean error product of any two
of the 14 sites and the seasonally averaged
ensemble covariance of any two of the 14 sites
from 1 to 10 day forecast lead times.

4.3 Ensemble covariance test

To measure the skill of the ensemble
covariance, the first test we made is to see on
average how different the ensemble predicted
covariance between two sites different from the
ensemble mean error covariance between the two



sites. So for each forecast lead time, we first group
respectively the ensemble covariance and the
ensemble mean error product between any two of
the 14 sites for the whole 2001 summer. Then we
average the ensemble covariance and the
ensemble mean error product respectively. The
former gives the seasonally averaged ensemble
covariance among two sites of the 14 sites and the
latter approximates the corresponding seasonally
averaged ensemble mean error covariance. For
ensembles with accurate average prediction of the
ensemble covariance, these two averaged values
should be the same. In fig. 3, we plot the
difference between these two averaged values for
1-10 day lead times. We find the result for the WB-
dressed ensemble is fluctuating around zero
throughout 1-10 day lead times. Whereas, the
results from the undressed ensemble and the two
RS-dressed ensembles deviate from zero largely
especially at longer forecast lead times. Note the
result of the RS-dressed ensemble with the best
member defined from the high dimensional space
has apparent deviations from zero even at the
short lead times

Another test we made to measure the
ensemble covariance is to see how the ensemble
covariance can resolves the ensemble mean error
covariance, i.e., the precision of the ensemble
covariance. As in the above measurement, we first
collect pairs of the ensemble covariance and the
corresponding ensemble mean error product
between any two of the 14 sites for the whole
2001 summer for each forecast lead time. Then
we divide these points into 3 equally populated
bins arranged in order of increasing ensemble
covariance. Then we average the ensemble mean
error product and the ensemble covariance
respectively in each bin. For ensembles with fine
precision of ensemble covariance, lines
connecting these averaged points should have
slope equal to 45 degrees and cross the point
(0,0), hereafter refer to as the reference line. What
is shown in fig. 4 is the averaged ensemble mean
error product and the ensemble covariance for
each bin for 1 day and 9 day forecast lead times
(other lead times not shown for brevity). For the 1-
day lead time, the line for the WB method is close
to those of the undressed ensemble and the RS-
dressed ensemble with the best member defined
by the low dimensional space. They all have slope
smaller than the reference line. The result from the
RS-dressed ensemble with the best member
defined by the high dimensional space deviates
from the reference line much more than the other
three ensembles. For the 9-day lead time, the

result from the WB method is the closest to the
reference line relative to all other ensembles.

Fig. 4 Relationship between the averaged
ensemble covariance and the averaged product of
the ensemble mean error (approximation of the
ensemble mean error covariance) of any two of
the 14 sites for (a) 1-day forecast lead time and (b)
9-day forecast lead time. See details in section
4.3.

5 DISCUSSION ON THE RESULTS



The above comparison results verify our
first concern about the RS method’s basic
hypothesis that the error statistics of the best
member identified from the full space, i.e., the true
best member, provides proper dressing
perturbation error statistics. The higher the
dimension used to identify the best member, the
more likely the true best member is identified.
Thus if the error statistics of the true best member
indeed provides the proper statistics for the
dressing perturbations, we should get better
results using the high dimensional space defined
in section 3.3 than the low dimensional space
defined in section 3.3.  However, the results in
section 4 contradict this corollary. In the most
measurements above, the RS-dressed ensemble
with the best member defined in the high
dimensional space is inferior to that with the best
member defined in the low dimensional space. To
explain why the RS ensemble with the best
member defined in the high dimensional space is
overdispersive throughout 1-10 day lead times
(fig.1c), we first notice that the error variance of
the best member defined in the high dimensional
space as in section 3.3 is only 10% smaller than
the worst member. In other words, all members
can be regarded as “the worst” or “the best” if
identified in such high dimensional space. There is
no significantly best member if identified in the full
or high dimensional space. This questions
Roulston and Smith (2003)’s basic hypothesis, but
consistent with the basic idea for ensemble
construction, i.e., all members should have the
same error statistics on average.

From section 4, the results of the RS-
dressed ensemble highly depend on the choice of
subspace where the best member is identified.
This result reveals the uncertainty on how to
choose the proper subspace to identify the best
member.

Although the RS-dressed ensemble with
the best member defined in the low dimensional
space performs better than that with the best
member defined in the high dimensional space, it
still perform worse than the WB ensemble. The
fact that it produces overdispersive ensemble at
short lead times and underdispersive ensemble at
long lead times (fig. 1d) indicates that the best
member method in general does not provide
reliable augmentation, which is consistent with the
results of our simple random number generator
experiment.

In contrast, the WB method has no
requirement on determining a subspace in prior
time. As long as one chooses the space of
quantities of interest to build up the statistics, It will

provide a reliable dressing.  An simple example on
its reliability is that when an ensemble is already
overdispersive, the WB method will choose not to
dress the ensemble while the RS method will still
dress the ensemble to make it even more
overdispersive.

6 SUMMARY AND FUTURE WORK

In this paper, we describe a new statistical
dressing kernel to augment the dynamic ensemble
in the post-processing.  Different from the best
member method by Roulston and Smith (2003)
where the dressing perturbation statistics comes
from the archived historic best member error, the
new kernel is determined by making the dressed
ensemble member indistinguishable from the
verification under second moment measurement
on a seasonally averaged basis.

We test this new dressing kernel and
reveal the problem of the best member method
with the ETKF ensemble (Bishop et al. 2001;
Wang and Bishop 2003; Wang et al. 2003). In the
test categories of rank histogram, skill scores and
ensemble covariance precision, the new dressing
kernel performs better than the best member
method in general.

In our experiments, the CCM3 outputs are
verified against the NCEP/NCAR reanalysis. In
future work and operational usage we will use the
real observation data. We will also try other
distributions other than Gaussian distribution when
generating the random vector by (9) and (10) to
dress quantities whose errors are largely deviate
from Gaussian distribution.
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