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1 INTRODUCTION

The Ensemble Transform Kalman Filter
(ETKF) ensemble generation technique (Wang
and Bishop 2003) provides dynamic ensemble
perturbations rather than the random sample
perturbations. In Wang and Bishop (2003) no
explicit method whereby the ensemble
perturbations could be centered about the best
available estimate of the true state, that is, the
control analysis is provided.  This is undesirable
because, ideally, one would like the ensemble
mean to always be equal to the minimum error
variance estimate of the true state.

The question of how one should center an
ensemble does not appear to have received much
attention in published literatures. Operationally,
the singular vector (SV) scheme (Buizza and
Palmer 1995; Molteni et al. 1996) and the
breeding scheme (Toth and Kalnay 1993, 1997)
both select symmetric positive/negative paired
centering, where an ensemble of K initial
perturbations (note we define an ensemble as K
perturbed members plus one control member) is
created by letting half of these perturbations be
the negative of the other half.  Toth and Kalnay
(1997) also raised another method where centered
perturbations are obtained by removing the
average of the perturbations from each individual
perturbation vector. We call it the subtract-mean
method.

Besides making the sum of the
perturbations equal to zero, there are two more
aspects that one needs to control when centering
the initial perturbations. First, if the ensemble
covariance is going to be used to estimate the
forecast error covariance then one would like the
covariance of the initial perturbations before and
after centering to be preserved; second, if
ensemble perturbations are to be treated as
equally likely error realizations, then the centered
perturbations must be equally likely.  The
traditional symmetric positive/negative pair method
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satisfies the above requirements. For the spherical
simplex method to be introduced in this paper, one
linearly dependent perturbation is added to the
one-sided ETKF ensemble to satisfy all these
three requirements. The subtract-mean method
however does not satisfy all these three
requirements (refer to Wang et al. 2003, the
complete manuscript for details).

For ensemble size large enough to span
all uncertain directions, the symmetric
positive/negative paired centering that provides
3rd order accurate ensemble mean and ensemble
covariance, becomes superior to the spherical
simplex centering that only provides 2nd order
accuracy. But if the ensemble size is not
sufficiently large, which is true for a high
dimensional system, the spherical simplex
centering can describe error covariance in up to
K-1 directions rather than just K/2 directions as in
the symmetric positive/negative paired centering.
The extent to which the theoretical superiority of
one scheme over the other would be born out
when K is less than the number of uncertain
directions might depend on things like the
dominance of the directions spanned by the
ensemble and the extent to which the ensemble
accounted for model error.

The goal of this paper is to test both
centering methods on the ETKF scheme. In
section 2 we briefly introduce the mathematical
expressions of the spherical simplex ETKF.
Section 3 describes how the numerical experiment
is designed.  Section 4 compares the numerical
experiment results of the two centering schemes.
In section 5 we summarize the results.

2 THE SPHERICAL SIMPLEX ETKF

Define K  forecast perturbations at the
12-h forecast lead-time as,
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ix , Ki ,,�1= , are K  perturbed 12-h

forecasts and x  is the mean of the K  perturbed
12-h forecasts, i.e.,
                   ( ) KK /xxxx +++= �21 .           (2)
After postmultiplying (1) by the transformation

matrix ( ) 21/−+= IΓCT  (see Bishop et al. 2001
and Wang and Bishop 2003) where C  and Γ  are
the eigenvector and eigenvalue matrices of

Kff /HXRHX 1TT)( −  (H  is the observation
operator and R  is the observation error
covariance matrix), only 1−K  independent ETKF
analysis perturbations are generated. This is
because the sum of the K forecast perturbations in
(1) is zero and therefore the last element of Γ  is
equal to zero.  Thus, (1) postmultiplied by the last
column of C  is a zero vector (note the
determinant of H  generally is not zero).
Mathematically, the 1−K  one-sided ETKF
analysis perturbations are
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where C , a  ( )1−× KK  matrix,  contains the first
1−K  columns of  C  and Γ  is a

( ) ( )11 −×− KK  diagonal matrix, whose diagonal
elements contain the first 1−K  eigenvalues in Γ .
Note the sum of columns in aX  is not zero and we
call it one-sided ETKF initial perturbations.

The idea of the spherical simplex
centering scheme is to postmultiply aX  by a

KK ×− )1(  matrix U  to form K  perturbations
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where the matrix U  is selected to ensure that a)

the sum of  
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analysis error covariance estimated by aX  is

conserved; and c) like 
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i , the new perturbations
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i , Ki ,,�1= , are equally likely.  The first
requirement is satisfied provided that
                                01 =U ,                               (5)
where 0  is a vector with each element equal to
zero and 1  is a vector with each element equal to
one.   The second requirement is satisfied
provided that
                               IUU =T ,                             (6)

where I  is the identity matrix.  Assuming a multi-
dimensional normal distribution, then the third
requirement is satisfied by the diagonal elements
of UUT  must be equal to each other, that is, each
column of U  has the same magnitude.

So far we have found two easy solutions
to satisfy the three requirements. Because the
matrix U  comes from the concepts of spherical
simplex sigma point (Julier 1998; Julier and
Uhlmann 1996, 2003), we call the ETKF analysis
perturbations constructed this way as the spherical
simplex ETKF. One of the solutions is a trivial
extension of the ETKF. It is easy to verify that TC
in (3) is one solution of U . So the K spherical
simplex ETKF analysis perturbations are

                  ( ) T21 CIDCXY /−+= fa .                (7)
For more details of this section please refer to
Wang et al. 2003, the complete manuscript.

3 NUMERICAL EXPERIMENT DESIGN

We ran 16-member ensemble plus one
control forecast, i.e., 16=K .  We used the same
numerical model CCM3 at T42 resolution as in
Wang and Bishop (2003). We also used the
NCEP/NCAR reanalysis as the control analysis
and verification.  The time period we consider is
the Northern Hemisphere summer in year 2000.
The observational network was also assumed to
contain only rawinsonde observations.  Pseudo-
observations were obtained from the reanalysis
data by relabeling reanalysis values of wind and
temperature at the rawinsonde sites as
“observations”. The observation error covariance
matrix was assumed to be time independent and
diagonal.  To estimate the error variance of these
pseudo-observations, we first calculate 12-h
innovation sample variance for wind and
temperature at each observation site by averaging
all the squared 12-h innovations in the summer of
2000 at each observation site. Then we choose
the smallest wind and temperature innovation
sample variance of all observation sites as the
observation error variance. The inflation factor
method is also used (please refer to section 3 in
Wang and Bishop 2003 for more details).

4 COMPARISON OF SPHERICAL SIMPLEX
AND POSITIVE/NEGATIVE PAIRED ETKF

4.1 Maintenance of Variance along Orthogonal
Basis Vectors



Fig. 1 Seasonally averaged spectra of eigenvalues
of 12-h ensemble-estimated forecast error
covariance matrices normalized by observation
error covariance in observation sites for spherical
simplex ETKF and paired ETKF ensembles with
16 perturbed members each.

For an ensemble with 16 perturbed
members (i.e. K=16), the short-term error
covariance estimates in predicting the true mean
and true error covariance have rank 15 for the
spherical simplex ETKF scheme, but only 8 for the
symmetric positive/negative paired ETKF scheme.
This expectation is confirmed by the seasonally
averaged eigenvalue spectra for 12-h ensemble-
based error covariance matrix in observation
space in fig. 1 (see similar plot and definition of the
eigenvalue spectra in figure 5 of Wang and Bishop
(2003)). While the 12-h ensemble forecast
variance for the spherical simplex ETKF ensemble
is evenly spread in 15 directions, almost all
ensemble variance is maintained in only 8
directions for the symmetric positive/negative
paired ETKF ensemble.  As a consequence,
optimal growth (Wang and Bishop 2003 section 6)
within the ensemble perturbation sub-space is
larger for the spherical simplex ETKF than for the
paired ETKF (not shown).

4.2 Comparison of Initial Ensemble Variance

To compare the performance in estimating
the true error variance, we first study how the
initial ensemble variance is governed by the

geographical variations of observations. Figure. 2
shows the square root of the seasonally and
vertically averaged initial wind error variance
estimated by the spherical simplex ETKF and the
symmetric positive/negative paired ETKF
ensembles.   For both the spherical simplex ETKF
and the paired ETKF ensembles, the initial
ensemble variance over the ocean is larger than
over the land, which is consistent with the fact that
rawinsonde observations are more numerous over
the land.  The spherical simplex ETKF initial
ensemble variance over the Southern Hemisphere
(SH) is much larger than over the Northern
Hemisphere (NH), which reflects the fact that the
rawinsonde is much less distributed in the SH.
However, this NH-SH contrast is smaller for the
paired ETKF than for the spherical simplex ETKF.
This result demonstrates that the spherical
simplex ETKF reflects the variation of observation
density distribution to a higher degree than the
paired ETKF.

Fig. 2 Square root of seasonally and vertically
averaged ensemble wind variance of initial
ensemble perturbations for (a) spherical simplex
ETKF ensemble and (b) paired ETKF ensemble.
Both ensembles have 16 perturbed members plus
one control member. The contour interval is 0.3
m  1−s .  Label H indicates local maximum.
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To better reveal how ensemble spread is
governed by the observation density, we plot the
rescaling factor that is defined as the ratio of
ensemble-estimated initial root mean square (rms)
wind error over ensemble estimated 12-h forecast
rms wind error.  Fig. 3 shows the vertically and
seasonally averaged rescaling factor.  The
effective rescaling factor for the spherical simplex
ETKF not only reflects the high concentration of
observations over Europe and North America, it is
also able to account for the smaller mid-latitude
observation concentrations over Southern
Hemisphere (SH) continents.  In contrast, the
rescaling factor of the positive/negative paired
ETKF fails to account for these land-based
observation concentrations within the Southern
Hemisphere.

Fig. 3 Seasonally and vertically averaged ratio of
ensemble estimated root mean square (rms) initial
wind error over ensemble estimated rms 12-h
forecast wind error for (a) spherical simplex ETKF
and (b) paired ETKF ensembles. Both ensembles
have 16 perturbed members and one control
member.  Contour interval is 0.003.

4.3 Root Mean Square Error of the Ensemble
Mean

Fig. 4 shows 200-hPa, 500-hPa and 850-
hPa globally averaged ensemble mean forecast
error in terms of the approximate energy norm
(see definition in equation (26) in Wang and
Bishop 2003) for the spherical simplex ETKF,
paired ETKF and one-sided ETKF ensembles with
16 perturbed members each.  Note for the same
ensemble size the one-sided ETKF ensemble has
one more subspace rank than the spherical
simplex ETKF.  The corresponding measurements
of control forecast errors are also shown for
comparison. The errors are measured against the
NCEP/NCAR reanalysis data at every model grid.
The ensemble mean of the spherical simplex
ETKF is considerably more accurate than the
symmetric positive/negative paired ETKF and
there is a bit improvement of the spherical simplex
ETKF over the one-sided ETKF at all lead times.
Although the paired ETKF is centered on the
control analysis initially, its ensemble mean is less
accurate than that of the one-sided ETKF from 2
to 10-day forecast lead times. These results
highlight the importance of resolving as many error
directions as possible and indicate that 2nd order
accuracy in many directions is better than 3rd
order accuracy in a few.

Fig. 4 Globally (all model grids at 200-, 500-, and
850-hPa) and seasonally averaged ensemble
mean forecast error in terms of the approximate
total energy norm as a function of forecast lead
time for the spherical simplex ETKF, paired ETKF
and one-sided ETKF ensembles.  Each ensemble
has 16 perturbed members and one control
member. The corresponding measurement of the
control forecast error is also shown.



4.4 Comparison of Ensemble Predictions of the
Innovation Variance

To compare the skill of the ensemble
spread in predicting the forecast error variance,
we adopt the methods introduced in section 8 of
Wang and Bishop (2003). The results below show
that for 1-day and 2-day forecast lead time the skill
of the ensemble predictions of the innovation
variance from the spherical simplex ETKF
significantly outperforms that of the paired ETKF.
For longer forecast lead time from 3 to 10 day,
their skills become close.

Fig. 5 The relationship between the sample
innovation variance and the ensemble variance for
the 4-bin case (solid line) and 32-bin case (dashed
line) at 1-day forecast lead time.  The R-square
value on the figure is a measurement on how
noisy the dashed curve relative to the solid curve.

Fig. 6 Same as fig. 5 except for 10-day forecast
lead time.

Fig. 5 shows the relationship between the
sample innovation variance and the ensemble
variance for 500-hPa U at 1-day forecast. This
figure is generated by first drawing a scattered plot
for which the ordinate and abscissa of each point
is respectively given by the squared 500-hPa U
wind innovation and 500-hPa U wind ensemble
variance at 1-day forecast at one midlatitude
observation location. The innovation is defined
here as the difference between the verifying
analysis and the 1-day ensemble mean forecast at
the rawinsonde observation sites.  Points collected
correspond to all midlatitude stations and all 1-day
500-hPa U forecasts throughout the NH summer
in year 2000.  To begin, we divide the points into
four equally populated bins, arranged in order of
increasing ensemble variance.  Then we average



the squared innovation and ensemble variance in
each bin, respectively.  Connecting the averaged
points then yields a curve describing the
relationship between the sample innovation
variance and the ensemble variance. The results
corresponding to the 4-bin and 32-bin cases for 1-
day forecast lead time are shown in figure 5.  First,
note that the range of innovation variance resolved
by the spherical simplex ETKF ensemble variance
is much larger than that of the paired ETKF.  A
statistical test based on halving the data size was
used to confirm this result. Second, as the sample
size in each bin is decreased (e.g., from 4-bin
case to 32-bin case), the relationship between
sample innovation variance and the ensemble
variance for 1-day forecasts becomes noisier for
the paired ETKF than for the spherical simplex
ETKF. The noisiness is measured by the R-square
value (Ott 1993) for the dashed curve relative to
the solid curve.  Less noisiness corresponds to
large R-square value.  A t test (Ott 1993) is used
to confirm that the R-square value of the spherical
simplex ETKF is significantly larger than that of the
paired ETKF. According to the analysis in section
8 of Wang and Bishop (2003), these results show
that for 1-day (true for 2-day as well, not shown)
forecast, the ensemble spread of the spherical
simplex ETKF is more accurate in predicting the
forecast error variance than that of the paired
ETKF.  Our result also shows that for longer
forecast lead time from 3 to 10 day, the skills of
the two centering schemes in predicting the
innovation variance become statistically
indistinguishable.  Figure 6 which is the result for
10-day forecast lead time illustrates this point.

5 SUMMARY

In this paper, we tested the performance
of two ensemble centering schemes for the ETKF
ensemble generation scheme. One was the
common symmetric positive/negative paired
centering and the other was the spherical simplex
centering.  In the spherical simplex scheme, one
more perturbation was added to one-sided ETKF
initial perturbations such that a). the sum of the
new set of initial perturbations equaled zero, b).
the covariance of the new perturbations was equal
to the analysis error covariance matrix obtained
from the one-sided ETKF initial perturbations, and
c). all the new initial perturbations were equally
likely.

The spherical simplex ETKF ensemble
mean was found to be more accurate than the
mean of the positive/negative paired ETKF
ensemble. For an ensemble of K perturbed

members, the spherical simplex ETKF maintained
comparable amounts of variance in 1−K
orthogonal and uncorrelated directions as
compared to only K/2 directions for the paired
ETKF.  The initial ensemble variance from the
spherical simplex ETKF better reflected the
geographical variations of the observations than
the paired ETKF.  The spherical simplex ETKF
can discriminate a significantly larger range of
sample innovation variance than the paired ETKF
for 1 day and 2 day forecast lead times.  Because
the spherical simplex ETKF initial perturbations
are generated by simply postmultiplying the one-
sided ETKF initial perturbations by a ( ) KK ×−1
matrix (section 2) where K is the number of
perturbed members, the computational expense of
generating the spherical simplex ETKF ensemble
is as small as that of generating the symmetric
positive/negative paired ETKF ensemble.
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