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1. INTRODUCTION 
 

Precipitation has been a target of verification for 
mesoscale numerical model forecasts since the early 
days of numerical weather prediction.  For daily or 
longer time periods, a mean square error or threat score 
approach may be suitable. However, for verifying 
forecasts of hourly precipitation, particularly from 
models with very fine grid spacing, such traditional 
approaches can unfairly penalize one model while 
unfairly rewarding another.   

 
A classic example is the decrease in skill of a 

model’s precipitation forecast as its grid spacing is 
decreased.  To the human eye, simulations on a finer 
mesh often appear to have better representation of 
mesoscale features than coarser simulations.  However, 
traditional metrics often rank such fine mesh simulations 
as inferior to coarser runs from the same model (Mass 
et al. 2002).  Subjectively, this effect appears to be 
caused by improper location or timing of the mesoscale 
features in the fine mesh model.  The fine mesh model 
is penalized heavily both for a lack of precipitation at the 
locations and times where it was observed and for 
having too much precipitation at nearby times and 
locations where precipitation was not observed.  By 
contrast a coarser forecast tends to predict smoother 
fields, e.g. weaker precipitation over greater areas, 
potentially leading to smaller point-by-point penalties 
and hence a superior skill score.  
 

Recently, a verification strategy has been 
developed at WSI Corporation to more fairly evaluate 
forecasts with fine grid spacings and short temporal 
frequencies. This method differs from traditional 
techniques in the way it associates forecast and 
observational data to form forecast-observation pairs.  
In this scheme, the skill of the forecast is measured by 
two metrics called acuity and fidelity.  
 

Acuity represents the model’s skill at detecting the 
features of the observed data.  The acuity of a forecast 
is calculated for each observed data point by finding the 
best matching forecast for that observation.  Instead of 
automatically associating an observation with the 
forecast that shares its location and time, the best 
match is obtained by minimizing a cost function 
calculated between the target observation and many 
candidate forecast data.  The candidate forecast datum 
that produces the smallest penalty is deemed the best 
match, and is therefore associated with the observation.     
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Fidelity represents the faithfulness of the model’s 

predictions to the observed data.  The fidelity of a 
forecast is calculated much like the acuity, except the 
roles of the observations and forecasts are reversed.  
Thus for each target forecast datum, the best matching 
observation is found within a multidimensional field of 
candidate observations. 
 

In this paper, we develop a cost function for 
verifying precipitation forecasts using the acuity-fidelity 
method and explore the sensitivities of this cost 
function’s parameters. The validity of the verification 
scheme is demonstrated by visually comparing 
precipitation output from different models with 
corresponding acuity-fidelity scores. The utility of the 
acuity-fidelity technique is demonstrated by comparing 
its results to those from a more traditional threat score 
approach.  
 
2. METHODOLOGY 
 
  To assess precipitation forecasts, a cost function 
was defined with four  components: one each for errors 
in distance, time, and intensity, and a fourth term to 
account for missed events. 
 

J = Js + Jt + Ji + Je       (1) 
 
In this study, intensity refers to one-hour accumulated 
precipitation; in general it could be any dependent 
variable.  To calculate a total acuity or fidelity penalty, all 
the cost function components must be converted into 
common units.  We chose to convert the time, intensity 
and event penalties into equivalent distances using the 
following component definitions: 
 

Js = ∆x          (2) 
Jt = Ue ∆t         (3) 
Ji = DI ∆I         (4) 
Je = f(Jmiss, Intensity regimes)    (5) 

 
In these equations, the variables ∆x, ∆t, and ∆I 
represent the absolute difference in position, time, and 
intensity, respectively, between an observed datum and 
a forecast datum.  Ue is the characteristic event velocity 
used to relate temporal and spatial errors.  DI is the 
distance-intensity ratio used to relate intensity and 
spatial errors.  Jmiss is the maximum value of J, and 
represents the worst possible penalty; the minimum 
penalty is 0.  The intensity regimes are a list of intensity 
values that define categories within the intensity 
continuum. 
 



The event term Je is calculated by determining the 
intensity regimes for a forecast-observation pair.  The 
intensity regime is a real number that represents a 
position within the defined ranges, e.g. a value midway 
between the first and second thresholds would have an 
intensity regime value of 1.5.  Je is set to 0 if the 
difference between the forecast and observed regimes 
is less than 1. Je is set to Jmiss if the pair differs by 2 or 
more intensity regimes.  If the forecast and observation 
differ between 1 and 2 intensity regimes, Je is calculated 
as a linear interpolation between 0 and Jmiss.   Figure 1 
shows the ratio Je/Jmiss as a function of target and 
candidate intensities for regimes defined by thresholds 
at 0.005, 0.05, and 0.25 in/hr.   For example, a target 
intensity of 0.2 in/hr and a candidate intensity of 0.016 
in/hr (indicated on the plot by an asterisk) results in Je = 
0.5 * Jmiss. 

Fig. 1 - Ratio Je/Jmiss for intensity regimes defined by
thresholds at 0.005, 0.05, and 0.25 in/hr.  

 
The intensity regimes are designed to represent 

important distinctions between data that have very 
similar intensity values, e.g. to discourage matches 
between effectively non-precipitating observations and 
lightly precipitating forecasts.  This effect could also be 
represented using a non-linear definition for Ji that 
depends on the magnitudes of the intensity values, 
rather than just their differences.  This effect was 
extracted into a separate event term to allow more 
insight into the matching algorithm.  Je values > 0 
indicate some degree of disassociation between the 
target datum and its candidate field. 

 
3. SENSITIVITY STUDY 

 
 Since the acuity-fidelity technique relies upon 
several configurable parameters, it is prudent to test the 
sensitivity of the results to their assumed values.  Such 
a sensitivity study was performed on 3, 6, 9, and 12-
hour forecasts of hourly precipitation from 39 cases of 
precipitating weather observed in the central U.S. during 
April and May of 2003.  Results are presented for 4 
model configurations, although many more were 
evaluated (See Sousounis et al. 2004 for further 
details). 
 

The sensitivity study includes forecast data from 
two NCEP models, Eta and the Rapid Update Cycle 
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Fig. 2  - a) acuity, b) fidelity, and c) combined score in km
for 4 models as a function of DI (km/mm/hr).  Each point is
an average over 156 times (39 initialization times and 4
forecast periods) and a variable number of grid point
locations, depending on the model. 
odel (RUC), as well as two different grid spacing 
onfigurations of the Weather Research and 
orecasting model (WRF) (Skamarock 2001).  The 
CEP Stage IV precipitation analyses (Baldwin and 
itchell 1997) are used as the observation.  The Stage 

V data are available on 4.8 km grids with hourly 
emporal frequency, while the Eta and RUC are 
vailable on 40 and 20 km grids, respectively, and have 

hree-hour temporal frequency.  The WRF simulations 
ere run on 12 and 36 km grids with an output 

requency of twelve minutes. The WRF simulations were 
itialized using Eta analyses, and were run with the 

ollowing parameterizations: Kain-Fritsch cumulus, OSU 
nd-surface model, MRF planetary boundary layer, 
essler microphysics, and RRTM radiation. 

 
Acuity and fidelity were calculated for each 

bservation and forecast datum within a region defined 
y a latitude-longitude box from 36.5° to 44° N and 103° 

o 92° W.  However, the best matches were not 
onstrained to fall within this region.  The verification 
egion contained 43,080 grid points from the Stage IV 
ata, 487 from Eta-40, 1,973 from RUC-20, 546 from 
RF-36, and 4,938 from WRF-12. 

 
The base values for the cost function parameters 

ere set to these values: Jmiss = 1000 km, Ue = 10 m/s, 



     DI (km/mm/hr)                        DI (km/mm/hr) 

Fig. 5 - Mean relative contributions of the cost function
components averaged between acuity and fidelity as a
function of DI in km/mm/hr for the same models as Fig. 3 
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Fig. 4 – Mean relative contributions of the fidelity
components Js, Jt, Ji, and Je as a function of DI in
km/mm/hr for the same models as Fig. 3. 

DI = 20 km/mm/hr, and intensity thresholds at 0.005, 
0.05, and 0.25 in/hr.  We justified the base values for DI 
and Ue by examining the effects of their variation, and 
the results of that study are presented in the paragraphs 
that follow.   Variations in Jmiss and the intensity regimes 
were not examined in detail, but their effects are most 
likely small, as they mainly affect the calculation of Je.  
Je generally has a small effect on the total cost unless 
the other parameters have extreme values, as will be 
seen in the sensitivity calculations for DI and Ue. 
 

Figure 2 shows the changes in the mean acuity, 
mean fidelity, and their sum, called the combined score, 
as a function of DI.  As expected, the cost function 
values for all models increase with DI.  The WRF-12 has 
the best acuity scores and worst fidelity scores.  The 
small acuity penalty represents a relatively high skill at 
predicting observed features, while the large fidelity 
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tion of DI for same models as Fig. 3.  Values are

ed for target data with intensity ≥ 0.25 in/hr.   
      DI (km/mm/hr)                        DI (km/mm/hr) 

. 3 – Mean relative contributions of the acuity
ponents Js, Jt, Ji, and Je as a function of DI in

mm/hr for a) Eta 40 km, b) RUC 20 km, c) WRF 36
 d) WRF 12 km. 
ndicates the tendency of the fine mesh model to 
features at the wrong place or time.   

re 2 also shows that acuity is larger than fidelity 
lues of DI.  This is because acuity is dominated 
 associated with the observations of intense 
tion, while fidelity can avoid these observations 
 search for a best match.  A graphical example 
n be seen in Fig. 9.  Another way to think of the 
e between acuity and fidelity is that acuity 
 contributions from all the observations, but only 
t of the forecasts, while fidelity contains 
on from all the forecasts, but only a subset of 
rvations.   

re 3 shows the mean relative contribution of 
ponent of acuity for each model as a function 

ll models show a similar trend, with a maximum 
ge of the cost associated with intensity at 
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precipitation cases are typically of the greatest interest, 
we chose DI = 20 to minimize the Je contribution in the 
stratified case, while still preserving a small Je 
contribution in the non-stratified case. 
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For the Ue sensitivity study, the cost function 

component breakdown averaged over acuity and fidelity 
is shown in Fig. 7.  In the Ue study, acuity and fidelity 
both exhibited similar patterns, and stratification on 
intensity had a much weaker effect than in the DI study, 
so for brevity, these plots are not shown.   
 

The main feature of the Ue sensitivity is that Jt only 
contributes significantly to the cost function for moderate 
values of Ue.  As Ue increases, Jt decreases mostly at 
the expense of increasing Js, indicating that large 
temporal penalties result in a wider spatial search.  At all 
Ue, Je is negligible, making it difficult to use minimization 
of the Je contribution as a criterion for picking the best 
Ue value.  Instead, we focused on picking a Ue value 
that would allow temporal searching to play a significant 
role in the verification, i.e. 1 ≤ Ue ≤ 10 m/s.  We chose 
            Ue (m/s)                                 Ue (m/s) 

 - Mean relative contributions of the cost function
nents averaged between acuity and fidelity as a
n of Ue (m/s) for the same models as in Fig. 3.  
ate values of DI and minima in the Ji contribution 
extreme values of DI.  This pattern is caused by 
ompeting effects.  At small values of DI, the 
ty penalty is so small that even large intensity 
nces contribute very little to the cost function.  At 
values of DI, the intensity errors are so strongly 
ed that the best match is likely to be a datum 

 very similar intensity to the target, even if it is 
ted widely from the target datum in space and 

 

gure 4 contains plots similar to Fig. 3, except for 
.  The fidelity contributions look similar to acuity at 
values of DI, but then become relatively 

itive at larger DI.  The most notable effect at large 
e decline in the importance of Je to effectively 0.  

e DI-sensitivities can be used to justify the choice 
I value for future verifications.  For that purpose, 
ay seek a value that minimizes the contribution of 
cause Je represents an inability to associate 
st and observed data, and it is desirable to find all 
able associations between the two.  Minimizing 

 contribution to fidelity favors large values of DI, 
minimizing the Je contribution to acuity favors 
oderate DI values.   

 address this difference in the location of the 
m Je contribution, an average of the acuity and 

 mean relative contributions are shown in Fig. 5.  
tified version of this plot is shown in Fig. 6, where 
uity contribution includes only the observations 
 intensity ≥ 0.25 in/hr and the fidelity contribution 
s only the forecasts where intensity ≥ 0.25 in/hr. 
n-stratified plot shows a minimum Je contribution 

= 40 for all models except WRF-12, where DI = 
However, the stratified plot shows a different and 
consistent pattern, with the Je contribution 
ially 0 for DI ≤ 20, then increasing with DI.  This 
ents the difficulty of making associations between 
sts and observations with large intensity values 
DI ≥ 40.  Since these moderate-to-heavy 

10 m/s because it is the typical scale of horizontal 
atmospheric motions.  However, a lower value would be 
more appropriate if one were interested in maximizing 
the potential for temporal matching. 
 
4. COMPARISON TO SUBJECTIVE VERIFICATION 
 
 The acuity-fidelity technique is designed to 
measure the skill noticed in subjective verification of fine 
mesh forecasts that have not been captured in 
traditional skill metrics.  To show that acuity-fidelity is 
consistent with subjective verification, we present in Fig. 
8 the graphical data needed to subjectively assess 
several nine-hour forecasts of one-hour accumulated 
precipitation.  The subjective assessment will be 
compared to corresponding acuity-fidelity metrics.  Note 
that the authors have compared numerous subjective 
verifications to acuity-fidelity metrics, but for brevity, we 
present only one example.  Readers are warned that 
this example is not necessarily representative of other 
cases we have studied. 
 

The precipitation analysis and forecasts shown in 
Fig. 8 are valid at 21 UTC on May 4, 2003; data from 
the preceding and subsequent hours are presented to 
the left and right of the target data to give a temporal 
context.  The top row shows the Stage IV analysis, 
which is taken as truth.  The next 4 rows show the 
forecasts from WRF 12 km, WRF 36 km, Eta 40 km, 
and RUC 20 km, respectively. 

 
 Note that the Eta and RUC one-hour precipitation 

accumulations were derived from three-hour 
accumulations through simple division.  A more fair 
assessment of RUC should include use of the one-hour 
precipitation accumulations that are available every 
three hours.  This was not done because acuity-fidelity 
requires the candidate data set to be a time series with 
equal time increments and no temporal gaps.   
 

It is also of note that the WRF accumulations were 
calculated from 12-minute output, which allowed more 



Fig. 8 – One hour accumulated precipitation in inches for periods ending 20, 21, and 22 UTC on May 4, 2003.  The data
sources are (from top row) Stage IV, WRF-12, WRF-36, Eta-40, and RUC-20, respectively.  All forecast models were
initialized on May 4 at 12 UTC.  The gray boxes on the plots at 21 UTC indicate the region over which verification metrics
were calculated (36.5° to 44° N and 103° to 92° W). 

temporal precision when searching the WRF forecasts 
for a best match to observations during acuity 
calculations.  There were four temporally-overlapping, 
one-hour precipitation accumulations available between 
each hour, e.g. for the periods ending at 20:12, 20:24, 

20:36, and 20:48 UTC.  For brevity, these are not 
shown, but they were part of the candidate field used 
during acuity calculations for the WRF simulations. 
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Model Threshold Acuity Fidelity Combined 
ta-40 0 21 10 31 
UC-20  19 8 27 
RF-12  16 12 28 
RF-36  20 14 35 

ta-40 0.005 58 17 75 
UC-20  63 21 83 
RF-12  57 35 92 
RF-36  53 29 83 

ta-40 0.05 101 27 128 
UC-20  108 34 142 
RF-12  94 47 142 
RF-36  79 42 121 

ta-40 0.25 233 N/A N/A 
UC-20  239 N/A N/A 
RF-12  206 69 275 
RF-36  183 67 249 

able 1- Mean acuity, fidelity, and combined score in km for 
he one hour precipitation forecasts shown in Fig. 8.  Values 
re shown for 4 stratification thresholds of the target 

ntensity:  0 (unstratified), 0.005, 0.05, and 0.25 in/hr.  The 
est (minimum) scores for each category are bolded.  
It is evident in Fig. 8 that all the forecast models 
iled to predict precipitation rates ≥ 0.5 in/hr.  This is 
xpected, because the models have from 3 to 10 times 
e grid spacing of the Stage IV analysis, and hence 

annot typically generate the most intense precipitation 
at was observed.  However, it is still instructive to be 
ble to assess how close these models came to 
producing such observed high resolution features, 

ven if they did not fully succeed.  This approach 
onsiders coarseness of grid spacing or temporal 
equency as a potential source of error, and thus allows 
n assessment of the effects on forecast skill of 
ecreasing a model’s grid spacing or increasing its 
mporal output frequency.  In order to isolate scale 
sues from the analysis, all data would need to be 
ltered to common spatial and temporal scales before 
e acuity-fidelity technique is applied.  Such a scale-
eutral analysis is left as future work. 

In the authors’ subjective opinions, the WRF-36 
eems to best represent the features of the Stage IV 
ata at 21 UTC.  It is the only model that predicted a 
recipitation maximum in eastern Nebraska, where it 
as observed.  Both Eta-40 and WRF-36 predicted a 
road trail of precipitation across northwestern Kansas 
at corresponds to a scattered line of observed 
recipitation. This line is spottier in the RUC data, and 
on-existent in the WRF-12.   The WRF-12 had the 
ost intense accumulations of all the models, but it 
cated one of its main cells in an area with little 
bserved precipitation; however this forecast feature 
as close to an observed cell in northeastern Nebraska.  
he WRF-12 placement of this cell looks better in the 
recast valid at 20 UTC, indicating a possible timing 
rror. The WRF-12 and WRF-36 had roughly equivalent 
recasts of the narrow line of observed precipitation 
ear the Kansas-Missouri border; both models predicted 
e feature too far to the south and east.  However 
RF-12 had more evidence of the observed cellular 

tructure, particularly in the forecast valid at 20 UTC.  

The RUC had a similar placement of this feature to the 
WRF simulations, but produced less precipitation. 

Fig. 9 – Spatial distribution of acuity and fidelity metrics for one-
hour precipitation forecasts from the WRF 36 km model as
shown in Fig. 8.  Metrics are a) acuity, b) fidelity, c) acuity
spatial error, d) fidelity spatial error, e) acuity temporal error, f)
fidelity temporal error, g) acuity intensity error, h) fidelity
intensity error.  Units are km for a-d, minutes for e-f, and in/hr
for g-h.  In e and f, green colors indicate where the model
forecasted features too early, and red colors indicate where the
model was too late. In g and h, green and red indicate forecasts
of precipitation that were too heavy or too light, respectively. 

 
 

For comparison, the mean acuity and fidelity scores 
for each forecast model at 21 UTC are shown in Table 
1.  The acuity and fidelity scores were calculated for 4 
stratifications of target intensity:  0, 0.005, 0.05, and 
0.25 in/hr.  Since the stratification is always on the 
target intensity, the mean acuity values include only 
data where the observed precipitation rate was greater 
than or equal to the stratification threshold value; for 
fidelity, the stratification is on the forecast precipitation 
rate.  Since neither RUC nor Eta forecast any points 
with a precipitation rate of 0.25 in/hr or greater, these 



models do not have a fidelity score for the 0.25 in/hr 
threshold. 
 

The mean acuity-fidelity metrics support aspects of 
the authors’ subjective verification, but also reveal some 
other patterns that were not as easily discernable.  For 
example, WRF-36 has the best acuity score for all 
stratifications except the unstratified case, indicating 
that it was the best model at predicting the observed 
precipitation.  The Eta-40 had the best fidelity scores for 
moderate thresholds, indicating that it made relatively 
few erroneous forecasts, once very light precipitation 
values were excluded. 

 
The RUC-20 had the best combined score for the 

unstratified case, followed closely by the WRF-12.  
These models had the finest grid spacings and 
produced precipitation over smaller, more specific 
areas.  This resulted in fewer erroneous forecasts (and 
hence better fidelity) as well as better detection of the 
non-precipitation observations (and hence better 
unstratified acuity).    

 
It is also instructive to examine the spatial 

distribution of acuity and fidelity metrics, including 
components of the cost function.  Figure 9 shows acuity 
and fidelity for the WRF-36 model, as well as the spatial, 
temporal, and intensity components of the error; the 
event component was negligible in this case. The spatial 
error is equal to Js, while the temporal and intensity 
components are equivalent to Jt and Ji, respectively, 
except that they are signed values and use units of 
minutes and inches per hour, respectively.  These units 
can be related to equivalent distances by multiplying by 
Ue or DI, respectively. 

 
A comparison of Figs. 9a and 9b can explain the 

disparity between relatively large mean acuity penalties 
and small fidelity scores.  Mean acuity is dominated by 
large acuity penalties in areas with intense observed 
precipitation.  For example the acuity penalties in 
eastern Nebraska peak between 400 and 500 km, while 
fidelity penalties in the same area have a maximum of 
50 km.   Because the observed features are of limited 
spatial extent, the fidelity calculation algorithm is able to 
find good matches to the forecast field by searching 
small distances in space, except in the vicinity of 
observed cells, where intensity contributes slightly to the 
error.  This can be seen by comparing Figs. 9b, d, f, and 
h: the fidelity in eastern Nebraska is almost completely 
characterized by spatial error.   

 
In contrast, the acuity of the observed line of 

precipitation across northwestern Kansas is determined 

b
a
s
o

Model Threshold POD FAR TS 
WRF-12 0.005 0.311 0.406 0.257 
WRF-36  0.342 0.363 0.286 
WRF-12 0.05 0.208 0.654 0.149 
WRF-36  0.265 0.673 0.171 
WRF-12 0.25 0.089 0.891 0.051 
WRF-36  0.125 0.961 0.030 

Table 3 – Threat score statistics for 39 test cases and 4 
forecast periods used in sensitivity study. 
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Model Threshold Acuity Fidelity Combined 
Eta-40 0 8 4 12 
RUC-20  7 4 11 
WRF-12  6 7 13 
WRF-36  7 5 12 
Eta-40 0.005 52 16 68 
RUC-20  59 18 77 
WRF-12  39 32 71 
WRF-36  48 22 70 
Eta-40 0.05 94 33 127 
RUC-20  110 42 153 
WRF-12  68 64 132 
WRF-36  86 47 133 
Eta-40 0.25 228 65 293 
RUC-20  232 99 331 
WRF-12  130 101 231 
WRF-36  177 79 256 

Table 4 – Acuity-fidelity statistics for 39 test cases and 4 
forecast periods used in sensitivity study. Values are in km.  
The best scores in each threshold category are bolded. 
Model Threshold POD FAR TS 
WRF-12 0.005 0.464 0.391 0.357 
WRF-36  0.420 0.117 0.398 
WRF-12 0.05 0.206 0.665 0.146 
WRF-36  0.245 0.475 0.200 
WRF-12 0.25 0.000 1.000 0.000 
WRF-36  0.000 1.000 0.000 

Table 2 – Threat score statistics for the forecasts shown in 
Fig. 8, using thresholds at 0.005, 0.05 and 0.25 in/hr. 
y a combination of small effects from spatial, temporal, 
nd intensity errors.   Slight adjustments in time and 
pace explain much of the error, except in the vicinity of 
bserved cells, where the intensity error dominates. 

. COMPARISON TO OTHER METRICS 
 
In this section we compare the skill rankings for our 

st cases as measured by the acuity-fidelity and threat 
core approaches.   For this study, threat score is 
alculated by examining both the forecasts and 
bservations of one hour precipitation at a common time 
nd location, and determining if the accumulations are 
bove or below a set threshold.  A 2x2 truth table is 
onstructed based on this data, and is used to calculate 
robability of detection (POD), false alarm rate (FAR), 
nd threat score (TS) (Wilks 1995). 

These metrics are tabulated in Table 2 for the one 
ate examined in the previous section.  For brevity, only 
e WRF-12 and WRF-36 models are shown.  From a 
reat score perspective, the models have only a fair 

kill at the lowest threshold, and have no skill at a 
reshold of 0.25 in/hr.  This result runs counter to both 

ubjective analysis and acuity-fidelity, which both 
dicate at least some skill in the forecast fields. 

To make the comparison more statistically 
eaningful, we compare the mean POD, FAR, and TS 
 mean acuity, fidelity, and combined score for all 39 
st cases and all 4 forecast times used in the sensitivity 

tudy.   The threat score statistics shown in Table 3 are 



more moderate on average than in the May 4 case, 
showing less skill at the lowest threshold, but more at 
the highest threshold. The acuity-fidelity results shown 
in Table 4 are quite similar to the May 4 case, except 
that WRF-12 proved more skillful on average than WRF-
36.  

 
The threat score statistics show relatively little skill 

compared to either acuity-fidelity or subjective 
verification.  This can be explained by the small amount 
of information from the forecast and observed fields that 
are used by these metrics.  Threat score statistics make 
no use of the relative spatial or temporal distribution of 
forecast and observed values, and make very little use 
of the dependent variable itself, reducing its precision 
from a real number to a Boolean. 

 
The acuity-fidelity method, stratified at 0.25 in/hr, 

awards the best mean acuity to the finest mesh model 
(WRF-12) and the best mean fidelity to the coarsest 
mesh model (Eta-40).  This indicates that Eta-40 made 
the fewest erroneous forecasts with intensities greater 
than 0.25 in/hr, but that WRF-12 had the best 
representation of the observed precipitation greater than 
0.25 in/hr.  

 
In Tables 1 and 4, mean values of acuity and 

fidelity were used to represent forecast skill; however 
the statistical processing of raw acuity-fidelity data could 
be made more complex than a simple average.  In fact, 
any technique that operates on forecast-observations 
pairs could be applied to the pairs generated by the 
acuity-fidelity technique.  Exploration of the use of 
alternate statistical techniques with acuity-fidelity is left 
for future study. 
 
6. CONCLUSIONS 
 

In this paper, we introduced a new verification 
technique called acuity-fidelity.  We applied this 
technique to the verification of precipitation forecasts 
and explored the sensitivities of the scheme’s 
configurable parameters.  While only precipitation 
forecasts were studied in this paper, acuity-fidelity could 
be applied to other phenomena, and is particularly well-
suited to rare-event forecasting using numerical weather 
prediction models.  Acuity-fidelity could be used to verify 
parameters other than precipitation either by modifying 
the configurable values of the cost function used in this 
study, or by developing a new cost function.  
 

We demonstrated that acuity-fidelity measures the 
skill of precipitation forecasts in a way that is consistent 
with subjective verification based on visual inspection, 
particularly if the metrics are stratified by intensity.  We 
also showed that visualization of the components of 
acuity and fidelity can be used as a tool for exploring 
and characterizing the skill of a forecast. 
 

Finally, we showed that the acuity-fidelity technique 
provides a more fair assessment of forecasts than 
traditional metrics, such as threat score.  This is 
particularly true if the forecasts have significant temporal 
or spatial errors.  Acuity-fidelity may provide a way to 

objectively assess forecasts that previously have been 
amenable only to subjective verification. 
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