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1. INTRODUCTION

Ensemble Transform Kalman Filter (ETKF)
(Bishop et al. 2001) is used to generate initial
perturbations for global ensemble forecasts by using
NCEP GFS model which is the base model for the
current NCEP global ensemble forecast system.
The initial perturbations in the current NCEP
bred vector based global ensemble forecast system
are rescaled from the forecast perturbations by a
rescaling factor that does not take the observation
information into account (Toth and Kalnay 1997).
An ideal rescaling factor should produce optimal
analysis perturbations based on ensemble forecasts
from the previous cycle and observations. One of
our aims is to make ensemble perturbations more
independent and flow-dependent.

ETKF, which is a variant of ensemble based
Kalman square-root filters (Tippett et al. 2003),
blends the forecast perturbations with instantaneous
real-time observation data that are used by NCEP
data assimilation system. It produces analysis per-
turbations that are based Kalman filter theory in
ensemble representation. The impact of the observa-
tions can be seen from the comparison of results from
the ETKF based ensemble forecast systems with dif-
ferent observational data.

2. BASIC FORMULATION

The ETKF formulation (Bishop et al. 2001) is based
on the Kalman filter with the forecast and analysis
covariance matrices being represented by k ensemble
forecast and k analysis perturbations, it is one of the
solutions from Kalman filter theory (Tippett et al.
2003). More details can be found in (Bishop et al.
2001, Bishop 2003, Wang and Bishop 2002, 2003).
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are k ensemble forecast and analysis perturbations.
In our experiments, z/ is the mean of k ensemble
forecasts (zf), while 2% is the analysis from data
assimilation. The forecast and analysis covariance
matrices are formed respectively P/ = Z/Z/" and
Pe = ZazaT

For a given set of forecast perturbations Z/ at
time t, the analysis perturbations Z7 can be solved
from the Kalman filter equation

P =P/ - P'HT'(HP'HT + R) 'HP!f (3)

where H is the observational operator, R is the
observational error covariance matrix. Let Af =
R-Y/2HZ/, A singular value decomposition of Af
is given by A/ = UT'/2CT.

The ETKF solution is Z* = Z/T, here T =
C(T +I)~'/2, C contains orthonormal right singu-
lar vectors and T' is a diagonal matrix containing
squared singular values of A7.

The analysis perturbations produced by ETKF in
this way are not centered around the analysis, since
Zle z¢ # 0.0. A simple transformation that will
preserve P? and center the analysis perturbations
around the analysis is the simplex transformation
(Wang and Bishop 2003). C7 is one of the solutions
of this transformation. Hence Z* = Z/TCT will
be used as our initial analysis perturbations for the
next cycle forecasts.

Since the number of ensemble members is too
small comparing with the dimension of model state
space, the analysis covariance is greatly underesti-
mated. It is necessary to inflate the analysis per-
turbations. The inflation factors we used is based
on the maximum likelihood on-line estimate (Dee



1995). Details can be found in Bishop 2003, Wang
and Bishop (2003).

3. OBSERVATIONS

The experiments run from 12/31/2002 to
02/17/2003, our studies are focused on the 32
days period from 01/15/2003 to 2/17/2003. The
observations used are from the conventional set
in NCEP global data assimilation system. The
conventional data set contains mostly rawinsonde
and aircraft data. There are some wind data from
satellites. The ensemble is cycled every 6 hours
in accordance with the NCEP data assimilation
system with new observations coming every 6 hours.
The number of observations is changing from time
to time. To have a snapshot of these observations,
we show temperature and wind distributions at
00Z January 19, 2003 in Figs. 1 and 2. In Fig. 1
(a), only those temperature data below 500mb are
shown horizontally. Fig. 1 (b) shows the numbers of
temperature observations between different vertical
levels.
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Figure 1: Temperature observation distributions at
00Z January 19, 2003. (a) the horizontal distribu-
tions of data below 500mb; (b) the vertical distribu-
tion.

For temperature, the data dense regions are in
North America and Euro-Asia. However, the wind
distribution is different. This is shown in Fig.2. The
wind observations from satellites cover most of the
tropic and both North and South Hemispheres.

4. VARIANCE DISTRIBUTIONS

An importance difference between the initial per-
turbations generated by ETKF based method and
the current breeding method is that the former has
taken the real-time observations into account. The
roles played by the observations can be seen clearly
from the observational space. We run 10 ensem-
ble members, the same number as the NCEP oper-
ational ensemble system at the time of the exper-
iments. The forecast and analysis covariance ma-
trices in normalized observational space are Af Af"
and A®A2T respectively, where A® = R1/2HZ®.
The variances in different eigen-directions are rep-
resented by the corresponding eigenvalues of the co-
variance matrices.

(a) Wind obs below 500mb(1900/01/03), number: 62629
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Figure 2: As in Fig.1, but for wind.
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Figure 3: The averaged variance distributions along
different eigen-directions of forecast and analysis co-
variance matrices in normalized observational space.



The red diamonds in Fig. 3 show the averaged
eigenvalues of Af AfT (6-hour forecast covariance
matrix in normalized observational space) over the
32 days period from 00Z Jan. 15 to 00Z Feb. 15,
2003. There are only 9 independent directions out
of 10 ensemble members. The dimension of sub-
space spanned by the 10 ensemble perturbations is
8.90 considering the variation of variances in differ-
ent directions. In comparison with the bred vec-
tor based ensemble forecast system, the spectrum is
more evenly distributed (not shown).

After ETKF analysis, the variances along different
eigen-directions are almost equally distributed. This
is shown in the black squares in Fig. 3. Note that
the analysis variances are inflated to compensate the
underestimations of small number ensemble repre-
sentation. The dimension of the subspace spanned
by the analysis perturbations is 9.00. The analysis
perturbations are more independent than the fore-
cast perturbations in the observational space.

5. IMPACT OF OBSERVATIONS

The main motivation behind using ETKF for ensem-
ble forecasts is to bring the observations into play
when we generate the initial perturbations for the
ensemble forecasts for the next cycle, since the initial
perturbations in ensemble forecast system should ac-
curately represent the analysis errors in the right
directions.

To test the impact of observations, we re-run the
experiments with slightly different observation data
at particular times. In the new experiments, we re-
move the Winter Storm Reconnaissance (WSR) data
at 00Z on Jan. 19, 26, 31 and Feb. 01, 03, 08, and 09
2003. Details about 2003 WSR data can be found at
http://wwwt.emc.ncep.noaa.gov/gmb/targobs/ tar-
get/wsr2003.html.

Each experiment starts from the exact initial con-
dition as the original experiments at the previous
cycle (i.e. 6 hours earlier). The new analysis per-
turbations on these 7 days at 00Z without WSR data
will be compared those with the WSR data. On each
day at 00Z, there are about 20 observations. Thus
in each of the 7 cases, the difference between the ex-
periments without and with WSR data will exactly
reflect the impact of only 20 observations. The av-
erage results of these 7 cases are shown in Fig. 4.

Fig. 4 shows the differences between the two ex-
periments without and with WSR data for rms anal-
ysis perturbations of temperature and wind (Figs. 4
(a) and (b)). The differences of two experiments for
the ratios between analysis and forecast perturba-
tions are shown in Figs. 4 (¢) and (d) for tempera-
ture and wind. The black crosses indicate the posi-

tions of WSR data. It is clear that when WSR, data
are removed, analysis perturbations are larger in the
areas where the WSR data are not available. It is
indicated that larger analysis errors are generated in
these areas without the WSR data. In another word,
the WSR data reduce the analysis errors. The re-
sults demonstrate the more observations will reduce
more analysis errors. Note that in some other ar-
eas outside the WSR data region, primarily near
equator, there are some noises. Convections near
tropics are more active than other regions, any dif-
ference including slightly different initial conditions
which might come from the global model integration
scheme will amplify quickly.

6. CONCLUSIONS

The experiments carried out in this study have
demonstrated that the ETKF based ensemble fore-
cast system is influenced by the observation data. In
comparison with most ensemble forecast systems at
major forecast operation centers, including bred vec-
tor and singular vector based systems which do not
use observations at all, the ensemble Kalman filter
based system can take advantages of available obser-
vations and reduce the analysis errors. This is a clear
improvement over the current generation of ensem-
ble forecast systems. Our results show that adding
more observations in one area will generally reduce
the analysis errors in that part of the area. Hence in
order to enhance the ensemble forecast performance
and reduce the errors in more regions, observations
should cover areas as large as possible.

From the ETKF theory, the analysis perturba-
tions are orthogonal in the normalized observational
space and the variances are very much evenly dis-
tributed along different directions. One can imagine
that larger areas with observations will increase the
dimension of subspace spanned by the analysis per-
turbations. Much improvement can be generated by
using a lot of more observations in comparison with
the current generation of ensemble systems where
the forecast perturbations show some strong corre-
lations (Wei and Toth 2003).

One should note that the number of ensemble
members is too small compared with the model state
space. Projecting the huge variances from a large
state space onto such a small subspace spanned by
the ensemble is a simplification. However the num-
ber of ensemble members that can be implemented
is limited by computing resources. For a given num-
ber of ensembles, it is important to inflate the anal-
ysis variances properly. At present, how to correctly
inflate the analysis variances remains a challenging
research issue.
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Figure 4: (a) and (b) are the differences of vertically
averaged rms analysis perturbations for temperature
and wind between the experiments without and with
WSR data. (c) and (d) are the differences of exper-
iments (without and with WSR, data) of vertically
averaged ratios between rms analysis and forecast
perturbations.
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