
73838 
Soil Moisture Initialization for Climate Prediction:  Characterization of Model and Observation Errors 

Wenge Ni-Meister (1), Jeffrey Walker(3), and Paul R. Houser (2) 
1. Department of Geology and Geography, Hunter College of The City University of New York, New York, NY10021 

2.Hydrological Sciences Branch, NASA Goddard Space Flight Center 
3 The University of Melbourne Parkville, Victoria 3010, Australia 

 
Abstract 

Current models for seasonal climate prediction  
are limited due to poor initialization of the land surface 
soil moisture states.  Passive microwave remote 
sensing provides quantitative information on soil 
moisture in a thin near-surface soil layer at large scale. 
This information can be integrated with a land surface 
process model through data assimilation to give better 
prediction of the near surface and deep soil moisture 
states than model predictions  or remote sensing 
observations alone. To achieve this, it is necessary to 
have a good understanding of both the model and 
observation errors. 

We have characterized the model error in the 
catchment-based land surface model(CLSM) used by 
the NASA Seasonal-to-Interannual Prediction Project 
(NSIPP) and the observation error of the near surface 
soil moisture from Scanning Multifrequency Microwave 
Radiometer (SMMR) data by comparing them with long 
term in-situ measurements of soil moisture collected in 
Russia, Mongolia  and China. We found that in dry 
climate areas,  such as  Mongolia and central China, 
central Russia or when the soil is frozen, (e.g. fall and 
winter in Russia), the CLSM has a dry bias. In  wet 
climate areas, such as the east coast of China and 
western Russia, the catchment model has a wet bias. 
The model error in Eurasia is typically less than 
0.12(v/v). We also found that SMMR-derived soil 
moisture data  has a wet bias  in China, and dry bias in 
Mongolia and throughout most of Russia.  The satellite 
observation error is large in wet and densely-vegetated 
regions and small in dry region. This indicates that if 
correct model error and observation error are used, 
data assimilation will give better soil moisture in China 
and Russia.    

Our analysis also shows  that the SMMR-
derived soil moisture data show a over-projected 
seasonal change than the in-situ measurements, while 
the modeled soil moisture shows a depressed seasonal 
change than the in-situ measurements. This indicates 
that assimilating remote sensed soil moisture with 
larger seasonal change into the model producing 
depressed s easonal change will give better soil 
moisture seasonal change than the soil moisture 
estimate  either pure model output or remote sensing 
satellite data alone. Lastly, the model predicts the 
rootzone soil moisture very close to in-situ 
measurements, indicating the assimilating surface soil 
moisture into the catchment model will give improved 
rootzone soil moisture which is important for climate 
prediction. Our error analysis has many implications for 
data assimilation and currently we are developing 
different assimilation algorithm to best take into account 
the model and satellite observation errors.  
 

I. Introduction 
  Accurate initialization of land surface moisture 
and energy stores in fully-coupled climate system 
models is critical for seasonal-to-interannual 
climatological and hydrological prediction.  Surface 
moisture exhibits persistence on seasonal-to-
interannual time scales, this persistence has important 
implications for the extended prediction of climatic and 
hydrologic extremes, and  better knowledge of soil 
moisture initialization plays an important role in 
seasonal predictions. 

The land surfaces influence the atmospheric 
condition through exchanges of energy and moisture. 
Improved soil moisture initialization can be obtained 
through integrating land surface process models with 
remotely sensed satellite observations.  

The NASA Seasonal-to-Interannual Prediction 
Project (NSIPP) is aimed at improving seasonal to 
interannual climate predictions using global coupled 
earth system (ocean-atmosphere-land-sea-ice) models. 
To enhance  climate prediction, innovative data 
assimilation algorithms are being developed to merge 
satellite data and model predictions. To this end, 
Kalman filter-based data assimilation strategy for near 
surface soil moisture observations has been included in 
the CLSM model by (Walkeret al. 2001; Reichle et al. 
2002)  For assimilation effort, one key component is 
model error and observation error to ensure good 
performance of data assimilation. Biased model error 
and observation error used during data assimilation will 
result in biased assimilation results. As the first step of 
our data assimilation effort, this study characterizes the 
model  and observation errors using in-situ 
measurements of soil moisture collected in Eurasia. 
2. Data Sets 
2.1 In-situ Measurements 
 The soil moisture measurements collected in 
China, Mongolia and Russia archived in the Soil 
Moisture Data Bank (Robock et al.,2000). The Soil 
Moisture Data Bank has soil moisture measurements 
collected at 43 meteorological stations in China, 42 
meteorological stations in Mongolia and 130 
meteorological stations in Russia over more than 8 
years. The Russian dataset  covers the period of 1978-
1985, while the Chinese dataset covers  the period of 
1981-1991 and the Mongolian dataset with varied 
length records at different stations, starting in 1973 and 
ending in 1997. Soil moisture profiles  were measured 
from 0 to 1m deep at 10cm increment. The majority of 
moisture monitoring sites were located either in grass 
or crop fields. This dataset is not pointed 
measurements. Each measurement is the averaged 
value of several measurements from several sample 
points. Particularly the soil moisture measurements for 
each station in Russia were obtained by averaging soil 
moisture over a small region so that the soil moisture 



measurement represents at a regional scale (K. 
Vinnikov, personal conversation). More details on the 
dataset and its collection can be found in Robock et al. 
(2000). For Russian and Mongolia datasets, only plant 
available soil moisture measurements are available. 
Since both SMMR-derived and modeled values are 
total soil moisture, The plant available soil moisture 
were converted into total soil moisture by adding the 
wilting point to plant available soil moisture.  
2.2Model  

The land surface model used in NSIPP is the 
Catchment-based Land Surface Model (CLSM) 
developed by et al. Koster (000c)nd Ducharne et al 
(2000) It uses a non-traditional land surface model 
framework that includes an explicit treatment of sub-
grid soil moisture variability and its effect on runoff and 
evaporation. The fundamental hydrologic unit is the 
watershed defined by the topography rather than an 
arbitrary grid. Soil moisture heterogeneity induced by 
topography within the watershed  is treated statistically. 
An analytical form of the TOPMODEL equation is used 
to produce consistent predictions of baseflow out of the 
watershed and out of the saturated fraction within it, 
which has a direct effect on evaportranspiration and 
surface runoff. 
 
Atmospheric forcings used are the bias corrected 
reanalysis data of ECMWF forcings  at half-degree 
from 1979 to 1993 developed by Berg et al. (2000) by 
adjustment of the re-analysis fields to match monthly 
mean observations. The gridded forcings were 
converted into catchment-based forcings and the model 
was run for the period of 1979 to 1993 over Eurasia. 
The model was first spinned up for ten years using the 
forcings of 1979 to initialize the model. 
2.3 Satellite Observations 

Passive microwave remote sensing 
techniques have been used to retrieve soil moisture 
content of a shallow surface soil layer (1cm) at globally 
1/4 degree spatial resolution from the  C-band  
Scanning Multifrequency Microwave Radiometer 
(SMMR) on the Nimbus -7 satellite for the period of 
1979-1987 \citep{Owe2001}. The SMMR instrument 
was in a sun-synchronous orbit, resulting in one 
daytime measurement at local solar noon and one  
nighttime measurement at local midnight. The algorithm 
used by Owe et al. (2001) is different from other 
traditional approaches in that it uses both the horizontal 
(H) and vertical (V) polarization at 6.6 GHz (C-
band)bands  together with temperature derived from 
37Ghz to solve simultaneously for surface soil moisture 
and vegetation optical depth. The algorithm was 
validated using in-situ soil moisture measurements 
from Illinois, US. The validation results indicate that the  
reliability of the soil moisture estimates becomes 
somewhat poor at large vegetation optical depths.  
3. Results and Discussion 
3.1 Bias of Model Prediction 

Figure 1 shows the seasonal change of the 
difference of the modeled and in-situ measured surface 
and rootzone soil moisture. In Mongolia, central China 
and southern Russia, whose climate is relative dry, the 

model gives drier both surface and rootzone soil 
moisture. In the east coast of China and the boundary 
of Mongolia and Russia, whose climate is relative wet, 
both the modeled surface and rootzone soil moisture 
has a wet bias. In the northwestern Russia, the 
modeled surface soil moisture has a very dry bias in 
winter and fall and a wet bias in spring and summer. 
The dry bias in the winter and fall maybe related to the 
fact that the model is not be able to handle the frozen 
soil moisture well yet. For all seasonal, the modeled 
rootzone soil moisture tends to have a wet bias in  
China and Russia (except for the drier bias during 
winter and fall) and a dry bias in Mongolia. In summary, 
the model has a dry bias in dry climate or when the soil 
is frozen and wet bias in wet climate. Overall the dry 
bias is less than 0.12 for both surface and rootzone soil 
moisture. In some extreme wet areas, such as 
southeastern China, in the boundary of Russia and 
Mongolia next to Lake Baikal, and western Russia, the 
model error is over 0.12. The wet bias for the surface 
soil moisture is  less than 0.16. The above analysis 
implies that the model error shows large spatial and 
temporal variations and using one constant model error 
will results in biased assimilation results. The spatial 
and temporal distribution of the model error has to be 
taken into account in order to obtain realistic 
assimilation results. 
3.2 Bias of Satellite Observation  

Figure 2 shows the climatological seasonal 
changes of  the differences of the SMMR-derived and 
in-situ measured surface soil moisture and between the 
SMMR-derived and the modeled surface soil moisture. 
Compared to the in-situ measurements,  SMMR gives 
drier surface soil moisture in  Mongolia and Russia 
(except for the northeastern Russia where the climate 
is wet), and a wetter surface soil moisture in China for 
all seasons. However, compared to model results, the 
SMMR data gave a wetter surface soil moisture in 
Mongolia and China and a dry bias in Russia (strongest 
in western Russia). 
4 Conclusions 

We have estimated the model error and the 
satellite observation errors by comparing the modeled 
and SMMR-derived soil moisture with the in-situ 
measurements in three different climate environment 
regions in Eurasia. The three climate environments 
include China -- a strong monsoon climate and 
Mongolia -- a dry climate and Russia -- a strong 
seasonal climate including heavy snow during winter. 
Our study shows that 1) both the model and satellite 
observation errors/bias have large spatial and temporal 
variations. In general, the model tends to give a dry 
bias during winter and fall season when the ground is 
frozen and the model tends to give a  dry bias under a 
dry climate and a wet bias under a wet climate. SMMR 
tends to overestimate soil moisture values in China and 
underestimate soil moisture in Russia during summer 
and fall. This implies that single constant values of 
model error and satellite observation error for data 
assimilation will result in biased assimilation results. 
RMSE of SMMR-derived soil moisture shows larger 
values than the one derived based on vegetation 



optical depth; 2). SMMR-derived soil moisture shows 
over-projected seasonal change than the observation, 
however the modeled soil moisture show depressed 
seasonal change. If the seasonal change of satellite 
observation is corrected assimilated into the model, we 
expect that the assimilated soil moisture will show a 
similar seasonal change to the in-situ measurements; 3) 
Spatially, some areas, SMMR data and the model 
estimate give opposite bias, for example, in Russia 
during the summer season, SMMR gives a dry bias and 
the model gives a wet bias; and in China, the model 
gives a dry bias and SMMR data give a wet bias. If the 
bias is correctly assimilated, then the assimilated soil 
mois ture will close to the ground truth. The current 
version of EnKF does not include bias correction; Also 
even in Mongolia, over the area where the absolute 
bias from SMMR is less than the absolute bias from 
model, we still expect improved soil moisture estimation 
through data assimilation. 4) Vertically, although the 
model does give too much vertical variations, the 
modeled rootzone soil moisture is very close to the in-
situ measurements, which is extremely valuable for 
assimilation. In indicates that we can assimilate 
satellite-observed surface soil moisture into the 
catchment to be able to obtained improved rootzone 
soil moisture. The rootzone soil moisture is more 
important for climate prediction than the surface 
moisture. 
Currently we are developing different assimilation 
algorithms to 1) take into account for the spatial and 
temporal variation of model and satellite observation 
errors in our data assimilation algorithm; 2) to 
assimilate the seasonal change by scaling the soil 
moisture, assimilating the soil moisture difference and 
implementing a bias correction in our assimilation 
algorithm.  
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Figure 1. Soil moisture difference between modeled at 
2cm depth and in-situ measurements at 5cm (China) 
and 10cm (Mongolia and Russia) depth in Eurasia 
during the period of 1979-1987. 

 
Figure 2. Seasonal change of SM_SMMR-SM_in-situ 
and SM_SMMR-SM_model over Eurasia during the 
period of 1979-1987 


