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Variational methods (3D-Var, 4D-Var) provide an optimal
control approach to the data assimilation problem. Four-
dimensional variational (4D-Var) data assimilation allows the
optimal combination of three sources of information: an a pri-
ori (“background”) estimate of the state of the atmosphere;
knowledge about the physical and chemical processes that gov-
ern the evolution of pollutant fields, as captured in the model
(CTM); and observations of some of the state variables. The
optimal analysis state is obtained through a minimization pro-
cess to provide the best fit to the background estimate and to all
observational data (space and time distributed) available in the
assimilation window. The use of the adjoint modeling to eval-
uate the gradient of the objective functional makes feasible the
implementation of the 4D-Var data assimilation for large-scale
atmospheric models.

The direct decoupled method has been extensively used
for sensitivity studies in three dimensional (3D) atmospheric
chemistry transport simulations (Yang et al., 1998; Yang et al.,
2000; Hakamiand et al., 2003). Direct sensitivity analysis via
(forward mode) automatic differentiation was also employed in
the context of photochemical transport models (Carmichael et
al., 1997; Huwanget al., 1997; He et al., 2000). Adjoint sensi-
tivity is a complementary approach which efficiently calculates
the derivatives of a functional with respect to a large number of
parameters.

In this paper we present the mathematical theory of adjoint
sensitivity analysis applied to three dimensional atmospheric
transport and chemistry models. We discuss the computational
tools developed and used to build the adjoint of a comprehen-
sive 3D air quality model, including parallelization and per-
formance of 3D adjoints. The use of adjoints for sensitivity
analysis and for data assimilation problems is illustrated using
numerical simulations of air pollution in East Asia during the
TRACE-P (TRAnsport and Chemical Evolution over the Pa-
cific) field campaign. The paper is organized as follows. In
Section 2 we review the mathematical theory of adjoint sensi-
tivity analysis applied to air quality modeling. Section 3 dis-
cusses implementation aspects. Numerical results for the sim-
ulation of East Asia are shown in Section 4. Conclusions and
future research directions are given in Section 5.
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In this section a review of the mathematical aspects of chem-
ical transport modeling and adjoint sensitivity analysis is pre-
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sented. Both the continuous and discrete adjoint approaches
are described.
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In what follows we denote by u the wind field vector, K the tur-
bulent diffusivity tensor, ρ the air density in moles � cm3, and ci
the mole-fraction concentration of chemical species i. The den-
sity of this species is ρ ci moles � cm3. Let V dep

i
be the deposi-

tion velocity of species i, Qi the rate of surface emissions, and
Ei the rate of elevated emissions for this species. The rate of
chemical transformations fi depends on absolute concentration
values; the rate at which mole-fraction concentrations change
is then fi � ρc ��� ρ .

Consider a domain Ω which covers a region of the atmo-
sphere. Let �n be the outward normal vector on each point of
the boundary ∂Ω. At each time moment the boundary of the
domain is partitioned into ∂Ω � ΓIN � ΓOUT � ΓGR where ΓGR

is the ground level portion of the boundary; ΓIN is the set of
(lateral or top) boundary points where u �P�n � 0 and ΓOUT the
set where u ���n � 0.

The evolution of ci in time is described by the material bal-
ance equations

∂ci

∂ t
� � u � ∇ci � 1

ρ
∇ ��� ρK∇ci �f� 1

ρ
fi � ρc � � Ei �

t0 � t � T � (1)

ci � t0 � x ��� c0
i � x � � (2)

ci � t � x ��� cIN
i � t � x � for x � ΓIN � (3)

K
∂ci

∂n
� 0 for x � ΓOUT � (4)

K
∂ci

∂n
� V dep

i ci � Qi for x � ΓGR � (5)

We refer to the system (1)–(5) as the forward (direct) model.
To simplify the presentation, in this paper we consider as pa-
rameters the initial state c0 of the model; it is known that this
does not restrict the generality of the formulation. The solution
of the forward model c � c � t � c0 � is uniquely determined once
the model parameters c0 are specified.

The direct model (1)–(5) is solved by a sequence of N
timesteps of length ∆t taken between t0 and tN � T . At each
time step one calculates the numerical approximation ck � x �;�
c � tk � x � at tk � t0 � k∆t such that

ck � 1 ����� tk � tk � 1 � � ck � cN � N � 1

∏
k � 0

��� tk � tk � 1 � � c0 (6)

The numerical solution operator � is usually based on an
operator splitting approach, where the transport steps along



each direction and the chemistry steps are taken successively.
Formally, if we denote by � the numerical solution operator
for directional transport, and by � the solution operator for
chemistry we have

� � t � t � ∆t � ��� ∆t � 2
X

��� ∆t � 2
Y

��� ∆t � 2
Z

��� ∆t ��� ∆t � 2
Z

��� ∆t � 2
Y

��� ∆t � 2
X

(7)
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Consider a scalar cost functional defined using the model solu-
tion c � t � � � c0 �f��
 T

t0
dt 


Ω
g � c � t � x � � dx (8)

The cost functional depends implicitly on the parameters c0 via
the dependence of c � t � on c0. We want to compute the sensitiv-
ity of this functional with respect to the parameters,

∂
�

∂c0 � x � � 
 T

t0
dt 


Ω

∂g
∂c
� c � t � ξ � � ∂c � t � ξ �

∂c0 � x � dξ (9)

This requires the sensitivities of the solution with respect to the
parameters

S � t � x � ξ �t� ∂c � t � ξ �
∂c0 � x � � S � 0 � x � ξ �t� δx � ξ (10)
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An infinitesimal perturbation δc0 in the parameters will result
in perturbations δci � t � of the concentration fields. These per-
turbations are solutions of the tangent linear model

∂δci

∂ t
� � u � ∇δci � 1

ρ
∇ � � ρK∇δci � � Fi � + � ρc � δc �

t0 � t � T � (11)

δci � t0 � x ��� δc0
i � x � � (12)

δci � t � x ��� δcIN
i � t � x �f� 0 for x � ΓIN � (13)

K
∂δci

∂n
� 0 for x � ΓOUT � (14)

K
∂δci

∂n
� V dep

i δci for x � ΓGR � (15)

In the above F is the Jacobian of the function f , and Fi � +
denotes its i-th row. We refer to (11)–(15) as the tangent linear
model associated with the forward model (1)–(5).

The sensitivities (10) link the solution perturbations with the
initial perturbations via

δc � t � ξ �t� S � t � x � ξ � δc0 � x � (16)

In the direct sensitivity analysis approach one solves the
model (1)–(5) together with the tangent linear model (11)–(15)
forward in time. The equations (11)–(15) are of convection-
diffusion-reaction type (with linearized chemistry) and in prac-
tice are solved by the same numerical method as the forward
model (6)–(7); computational savings are possible by reusing
the same matrix factorizations.
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The adjoint of the tangent linear model defines the evolution of
the adjoint variables λi

∂λi

∂ t � ∇ � � uλi ��� � ∇ ��9 ρK∇
λi

ρ : �<; FT � ρc � λ =
i

� φi � T > t > t0 � (17)

λi � T � x ��� λ F
i � x � � (18)

λi � t � x ��� 0 for x � ΓIN � (19)

λiu � ρK
∂ � λi � ρ �

∂n
� 0 for x � ΓOUT � (20)

ρK
∂ � λi � ρ �

∂n
� V dep

i
λi for x � ΓGR � (21)

To obtain the ground boundary condition we use the fact that u �
n � 0 at ground level. φi is a forcing function yet to be defined.
We refer to (17)–(21) as the (continuous) adjoint system of the
tangent linear model (11)–(15). Note that the adjoint initial
condition is posed at the final time T .

The adjoint system (17)–(21) depends on the state of the for-
ward model (i.e. on the concentration fields c � x � t � ) through the
nonlinear chemical term F � ρc � and possibly through the forc-
ing term φ for nonlinear functionals. This means that the for-
ward model must be first solved forward in time, the state c � x � t �
saved for all t, then the adjoint model could be integrated back-
wards in time from T down to t0.

In practice a hybrid approach is used. The forward model
is solved using a numerical method, and the numerical approx-
imation of the state is saved periodically. These checkpoints
are used in the definition of the adjoint equations. The con-
tinuous adjoint equation (17)–(21) is a convection-diffusion-
reaction equation (with linearized chemistry) and can be solved
by any numerical method of choice. In particular an operator
splitting approach could be employed using the same numerical
methods as for solving the direct model

λ k ��� � tk � 1 � tk � � λ k � 1 � λ 0 � N � 1

∏
k � 0

� � tN ? k � tN ? k ? 1 � � λ N (22)

The forcing function φi and the initial values λ F
i are chosen

such that the adjoint variables are the sensitivities of the cost
functional with respect to state variables (concentrations)

λi � x � t �t� ∂
�

∂ci � x � t � (23)
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In this approach the numerical discretization of the (1)–(5) is
considered to be the forward model (6). This is a pragmatic
view, as only the numerical model is in fact available for anal-
ysis. For brevity the state of the discretized model will be de-
noted ck

i F j G , where i is the species index, j is the space dis-
cretization index and k the time discretization index. ck F j G will
refer to the vector of all species at time level k and grid level
j. The cost functional is defined in terms of the discrete model
state � � c0 �f� N

∑
k � 0

∑
j

g � ck F j G � (24)



and one wants the derivatives of this functional with respect
to the discrete model parameters c0

i F j G . A perturbation δc0 in
the parameters c0 propagates in time according to the tangent
linear discrete equation

δck � 1 �$��� � tk � tk � 1 � � δck � δcN � N � 1

∏
i � 0
��� � tk � tk � 1 � � δc0 (25)

where � � is the tangent linear operator associated with the so-
lution operator � . For an operator splitting approach (7) � �
is built from the tangent linear transport and chemistry opera-
tors

� � � t � t � ∆t � � � � ∆t � 2
X ��� � ∆t � 2

Y � � � ∆t � 2
Z

� ��� ∆t ����� ∆t � 2
Z ����� ∆t � 2

Y ����� ∆t � 2
X (26)

To each tangent linear operator corresponds an adjoint operator
(denoted here with a star superscript). The adjoint equation of
(26) is

� � + � t � ∆t � t � � � � + ∆t � 2
X � � � + ∆t � 2

Y ��� � + ∆t � 2
Z

� � � + ∆t ��� � + ∆t � 2
Z ��� � + ∆t � 2

Y ��� � + ∆t � 2
X (27)

such that the resulting (discrete) adjoint model is

λ k �$� � + � tk � 1 � tk � � λ k � 1 � φ k � 1 � λ N F j G � λ F � x j � (28)

This approach was taken to build the adjoint of the 3D chem-
ical transport model STEM. The exact formulation of discrete
adjoint operators depends on the numerical methods employed
to solve the forward model.

The forcing function φ and the initial values λ N are chosen
such that the adjoint variables are sensitivities of the functional
with respect to the state variables

λ k
i F j G�� ∂

� � c0 �
∂ck

i F j G (29)
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The forward and adjoint models are parallel and were run on
a cluster of Linux workstations. Parallelization is based on
dimensional splitting as supported by our library PAQMSG
(Miehe et al. 2002) . The library supports data types for struc-
tured grids, and implements routines for data decomposition,
allocation of local and global entities, data scattering, gather-
ing, and shuffling. We use the horizontal-vertical data decom-
position. With data in the horizontal slice format each proces-
sor can compute the horizontal transport; then data is shuffled
in vertical column format and each processor can compute ra-
diation, vertical transport, chemistry and aerosol processes in
one column. The bulk of the computations is done with data in
the column partitioned format; PAQMSG implements a static
mapping scheme of columns (tasks) to processors that ensures
an excellent load balancing. On a cluster of workstations all
input and output is handled by the master process; and all com-
putations are done by the worker nodes.

For the adjoint we use a two-level checkpointing scheme.
The level-2 checkpoints store the concentration fields on the
disk every 15 minutes, i.e. at every operator split step. Note
that the linear transport scheme does not require any additional
checkpointing storage. The amount of level-2 checkpoint data

increases fivefold if a nonlinear transport scheme (e.g. using
flux limiting) is used. The level-1 checkpoints store the concen-
trations for each process inside the 15 minutes intervals; level-1
checkpoints use memory buffers. For example one forward in-
tegration of each chemical box model for 15 minutes split time
interval requires a number of smaller time steps; these interme-
diate concentrations are stored in a temporary matrix and used
during the backward integration of the adjoint model. Opera-
tor splitting and the relative short split time intervals make it
feasible to store the level-1 checkpoints in memory.

The gas phase chemical mechanism is SAPRC-99 (Carter,
2000) which considers the gas-phase atmospheric reactions of
volatile organic (VOCs) and nitrogen oxides (NOx) in urban
and regional settings. The forward time integration is done with
the Rosenbrock numerical integrator Ros-2; the continuous ad-
joint model uses Ros-2 on the same sequence of steps as the
forward chemical integration. Both the forward and the adjoint
models are implemented using KPP.

For our East Asia application discussed in the following sec-
tion the total level-2 checkpoint information stored is � 162
MBytes of data for each hour of simulation; or � 4 GBytes per
24 hours of simulation. The level-2 checkpoints of the parallel
model are distributed in a manner where each node stores local
information on the local disk. This takes full advantage of the
total storage capabilities of the system. It also decreases the
communication overhead when the parallel computation runs
on a cluster of workstations since the gigabytes of data are
not transmitted over the (relatively slow) connection. The dis-
tributed checkpointing strategy is therefore essential for both
efficiency and overall storage capacity. Note that for the static
domain decomposition implemented in PAQMSG the local en-
tities (i.e. horizontal slices or sets of columns of the concen-
tration field) have the same size throughout the computation,
which makes the implementation of the distributed checkpoint-
ing scheme very efficient. For a dynamic domain decomposi-
tion strategy, on the other hand, the size of local entities change
during the computation and the implementation of distributed
checkpointing becomes complicated.
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The adjoint of the STEM chemical transport model can be used
in sensitivity analysis studies and also for chemical data assim-
ilation. We now present these two important applications of
the computational tools developed. The analyzed problems are
in support of large field experiments conducted in East Asia
(i.e. TraceP). The simulated region is East Asia, and the sim-
ulated interval is one month starting at 0 GMT on March 1st,
2001. The meteorological fields are given by a dynamic me-
teorological model (RAMS), and the initial fields and bound-
ary conditions correspond to Trace-P data campaign. The
grid is 90 	 60 	 18 points and has a horizontal resolution of
80Km 	 80Km.
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For the sensitivity analysis 10 simulation tests are carried out
to cover the whole month of TraceP campaign period. They are
listed in Table 1. The simulation interval for each case is three
days. The first case starts at 0 : 00 GMT on March 1st, 2001,
the second starts at 0 : 00 : 00 GMT on March 4th, 2001, and
so forth. The response functional g � g � c � tF � � is the ground
level ozone concentration at Cheju Island, at the final time step
of each case.



As shown in Section 2, sensitivities of the response function
g � g � c � tF � � with respect to the state variables (at each time
instant) are the adjoint variables λ � t � , which can be obtained
by integrating the adjoint model backwards in time. The distri-
butions of the adjoint variables in the three-dimensional com-
putation domain, which are available at any instant, provide the
essential information for the sensitivity analysis. For instance,
isosurfaces of adjoint variables delineate “influence regions”,
i.e. areas where perturbations in some concentrations will pro-
duce significant changes in the response functional (e.g. ozone
at Cheju Island at the final time).

Results show that the influence regions are most affected by
the meteorological fields. Figure 1 displays the influence ar-
eas of ozone (λO3

) at 24 hours before the final time in case 2
(March 4–6) and case 8 (March 22–26) respectively. The in-
fluence region for case 8 is toward the South and close to the
Cheju Island, while that for case 2 is toward Northwest. This
difference reflects different meteorological conditions, as indi-
cated by the wind fields shown in Figure 1.

However, the influence regions are difficult to predict based
solely on meteorological fields, due to the influence of turbulent
diffusion and complicated chemical reactions. Because of the
turbulent nature of the atmospheric boundary layer, the influ-
ence region may quickly extend to a very large area, covering
most of the computational domain, and even beyond that. The
fact that influence regions cannot be simply predicted through
the meteorological fields is indicated by the differences in the
influence regions of various chemical components, even if they
are all driven by the same wind field. Figure 2 shows that in-
fluence regions of NO2 and HCHO at the same instant of case
1 (March 1–3) exhibit very different shapes, even if they are
driven by the same wind field. This can be explained by the
distinct roles of NO2 and HCHO in the ozone production.
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Data assimilation means the integration of observational data
and models with the goal of providing an optimal analysis state
of the atmosphere. By optimal analysis state we mean an in-
timate and close integration of modeled and measured quan-
tities, with the two merged together to provide the best esti-
mate, physically consistent, of the evolving chemical state of
the atmosphere. The analysis state better defines the spatial
and temporal fields of key chemical components in relation to
their sources and sinks.

The numerical results presented here correspond to the Tra-
ceP conditions starting at 0 : 00 GMT of March 1st, 2001. The

Table 1: Descriptions of the sensitivity analysis tests
Case Simulation period Target O3 concenration

1 March 1-3, 2001 0 GMT on March 04, 2001
2 March 4-6, 2001 0 GMT on March 07, 2001
3 March 7-9, 2001 0 GMT on March 10, 2001
4 March 10-12, 2001 0 GMT on March 13, 2001
5 March 13-15, 2001 0 GMT on March 16, 2001
6 March 16-18, 2001 0 GMT on March 19, 2001
7 March 19-21, 2001 0 GMT on March 22, 2001
8 March 22-24, 2001 0 GMT on March 25, 2001
9 March 25-27, 2001 0 GMT on March 28, 2001

10 March 28-30, 2001 0 GMT on March 30, 2001

data assimilation experiment is set using the twin experiments
framework as follows:

� Reference run: The reference model run starts with the
reference initial concentrations of all chemical species.

� Observations and assimilation window: We consider a 6
hours assimilation window. The observations are con-
centrations of selected species Y obs

o (here O3 and NO2)
as computed by the reference run. Observations are pro-
vided on all grid points at the end of the assimilation win-
dow.

� Parameters: the control parameters are the initial concen-
trations of selected species Yc � t0 � (here O3 and NO2).

� Initial guess: The reference initial values of the control
species are increased by 20% to form the initial guess,
which also serce as “background” values Yb.

� Cost functional: Measures the distance between the
model predictions Yo and the values Y obs

o of the selected
observed species, as well as the deviation of control vari-
ables from the background state.� � Yc � t0 � � � 1

2b ∑ F � Yc � t0 � � Yb G 2
� 1

2r ∑ FYo � tF � � Y obs
o � tF ��G 2 (30)

where b � 1000 and r � 1. It means we trust the measure-
ments considerably more than the background state.

� Optimization algorithm: Quasi-Newton limited memory
L-BFGS (Byrd et al. 1995) . The optimization proceeds
until the cost functional is reduced to 0.001 of its initial
value, or the number of forward-backward model integra-
tions exceeds 15.

We consider several scenarios, with the control variables be-
ing O3 or NO2, and the observed variables being O3 and/or
NO2. The performance of the data assimilation procedure is
measured by two indicators, the cost function value and the
RMS error of control variables. The decrease in the cost func-
tion value versus the number of model runs during the opti-
mization procedure is shown in Figure 3. The RMS errors

Figure 1: Influence areas of ozone on ozone at Cheju at 24
hours before the final time from (a) March 4–6, and (b) March
22–24. The isosurfaces of λO3

� 0 � 001 are shown as dark ob-
jects for both cases. Wind vectors at 2 km above the sea level
are also shown over lightly gray-scaled topography. The differ-
ences in isosurface shapes and locations are due to differences
in meteorological fields.



Figure 2: Influence ares of NO2(a) and HCHO(b) for March
4–6, at 48 hours before the final time. The isosurfaces λNO2

�
0 � 001(a) and λHCHO � 0 � 0001(b) have different shapes due to
the distinct roles NO2 and HCHO play in ozone production.

shown in Figure 4 measure the difference between the refer-
ence values of the control variables and their values recovered
by data assimilation The decrease in the RMS error of control
variables value versus the number of model runs during the op-
timization procedure is shown in Figure 4. With O3 as control
variables the optimization procedure produces a considerable
decrease in the the cost function value, and a good decrease in
the RMS error. Most of the information comes from O3 ob-
servations; additional NO2 observations do not seem to bring
noticeable benefits. This may be due to the lack of scaling in
our formulation of the cost functional. Ozone initial conditions
seem to be recoverable through data assimilation. For compar-
ison we include the optimization of the cost functional without
the background term (corresponding to an infinite background
covariance). As expected the cost function decreases further.

With NO2 as control variables the decrease in the cost func-
tion, and in the RMS error, is not as pronounced. Again most of
the information comes form O3 measurements, with additional
NO2 measurements contributing very little to the optimization
process. After about 10 model runs the RMS errors tend to
stagnate, even if the cost functional continues to decrease. Per-
turbing the initial NO2 concentration by 20% results in only
a small change in the final (observed) O3 concentration. This
may be explained by the fact that NO2 levels are driven mostly
by emissions, and less by the initial conditions, which affects
the observability of the initial NO2 field through ozone mea-
surements. The results indicate that further algorithmic devel-
opments are needed for assimilating NO2. In particular a better
scaling of the cost function, through a rigorous definition of the
covariance matrices, is necessary.

� N�JLD{N$Y#M$[�CrJLD&[
In this paper we discuss the adjoint sensitivity analysis of three
dimensional atmospheric transport and chemistry models. Ad-
joint modeling proves to be a powerful computational tool for
sensitivity studies as well as for integrating observational data
into the model in a four-dimensional variational (4D-Var) data
assimilation procedure.

An overview of the mathematical theory of adjoint modeling
applied to convection-diffusion-reaction models of atmospheric
pollutants is given. The continuous and discrete adjoint model
approaches are outlined, and formulations of the forcing terms
for different cost functionals are discussed.

The use of adjoints for sensitivity analysis and for data as-
similation problems is illustrated using numerical simulations
of air pollution in East Asia. The analyzed problems are in sup-
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Figure 3: Data assimilation results: Cost function values (nor-
malized by their pre-assimilation values) decrease during the
optimization procedure. Several tests are shown using different
control (CTRL) and observed (OBS) variables.
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Figure 4: Data assimilation results: RMS errors of the con-
trol variables at the initial time (normalized by their pre-
assimilation values) decrease during the optimization proce-
dure. Several tests are shown using different control (CTRL)
and observed (OBS) variables.

port of the large TraceP experiment conducted in East Asia in
March 2001.

For sensitivity studies the target function is the ozone con-
centration at Cheju Island. Isosurfaces of adjoint variables de-
lineate “influence regions”, i.e. areas where perturbations in
some concentrations will produce significant changes in this re-
sponse functional. Results show that the influence regions are
most affected by the meteorological fields, however they are
difficult to predict from the meteorological information alone
due to the influence of turbulent diffusion and complicated
chemical reactions.

The data assimilation experiments are conducted in the twin
experiment framework. We consider several scenarios, with the
control variables being O3 or NO2, and the observed variables
being O3 and/or NO2. The performance of the data assimila-
tion procedure is measured by two indicators, the cost function
value and the RMS error of control variables. The initial O3
control variable can be recovered nicely from measurements
through 4D-Var data assimilation. The recovery of the initial
NO2 concentrations is more difficult, presumably the fact that
NO2 levels are driven mostly by emissions.



Future work will focus on continuing the development of al-
gorithmic and software infrastructure for adjoint modeling of
comprehensive chemical transport models; and on using this
computational infrastructure to run more complex tests and to
assimilate real measurements data. The fundamental goal of
this work is to enable the assimilation of chemical data avail-
able from ground, airplane, and satellite measurements into the
models.
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