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1.  INTRODUCTION 
 
Hurricane intensity forecasting has not made the same 
progress as hurricane track forecasting since the 
National Hurricane Center (NHC) began providing each 
to the public. For intensity predictions, one of two 
techniques available to the NHC is a Statistical 
Hurricane Intensity Prediction Scheme (SHIPS) that 
incorporates climatology, persistence and synoptic 
parameters in a multiple linear regression routine 
(DeMaria and Kaplan, 1999) to determine the 
hurricane’s intensity. It is shown here that a new 
statistical technique incorporating Neural Networks (NN) 
improves upon SHIPS at 24 and 48 hour by ~5%.  In 
addition, the NN can provide information about non-
linear interactions that are difficult to do with regression-
based schemes. 
 
2.  DATA AND METHODOLOGY 
 
2.1 Neural Networks  
 
NNs began as research in the biological fields to 
understand how the brain responds to stimuli and use it 
for pattern recognition. Although the typical architecture 
of a NN is somewhat straightforward (Fig. 1), its 
usefulness in providing predictions for training inputs 
was limited until the advent of a self-correcting routine 
that automatically alters the weights to minimize errors.  
Once this ‘backpropagation of errors’ algorithm (Hagan 
et al., 1996) was developed the NN was found to be 
highly useful in recognizing, not only linear behavior, but 
non-linear and non-continuous functions as well.  
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Figure 1: Common structure of a NN with biological 
analogies. Output signal(s): Outi = f (Σjvij ▪ f (Σkwjk ▪ xk)), 
where the function, f, is constrained to be continuous 
and differentiable.  
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2.2 NN and SHIPS comparison 
 
To compare the NN skill to SHIPS, climatological, 
persistence and synoptic indicators that are part of the 
SHIPS linear regression scheme are also included in 
the NN input (see Table 1: DeMaria and Kaplan, 1999), 
with the exception of the squared ‘Maximum Potential 
Intensity – Initial Intensity’ term (POT). Due to the fact 
this term was also included as a non-squared term; the 
ability of the NN to detect a quadratic relationship 
should be seen after NN training is complete. For skill 
comparison, each year from 1989 to 2002 was removed 
individually from both the SHIPS and NN routine. Once 
the SHIPS and NN were optimized, the weights from 
both were applied to the missing year and the difference 
in intensity forecasts for 24, 48 and 72 hours were 
calculated. 
 
2.3 NN Design (Hagan et al., 1996) 
 
A simple feedforward design with 12 inputs, 10 hidden 
neurons and one output (corresponding to predicted 
wind speed) is used. Although there are many other NN 
designs that are available and may provide higher skill, 
this initial construction was chosen for its simplicity. NN 
inputs were normalized by subtracting the mean and 
dividing by the standard deviation. Ten hidden neurons 
were chosen as a means to increase the degrees of 
freedom of the network without bringing in too many 
neurons that would increase training time. A tan-sigmoid 
transfer function (with an output range of -1 to 1) was 
used on the hidden layers while a linear function is used 
on the NN output (allowing predictions outside the range 
of the training set). Initial weights were randomly chosen 
and the NN training was performed using a Matlab 
traingdx routine. Ironically one of the biggest 
disadvantages of NNs is the ability to derive weights 
that can replicate the training set too accurately. With 
errors on the training set too low, future predictive skills 
tend to be poor. Using an ‘msereg’ algorithm, the 
network will have smaller weights and biases that tend 
to force the network response to be smaller and less 
likely to over fit.   
 
3.  RESULTS 
 
Wind-speed predictions for SHIPS and the NN are 
shown in Fig. 2. The NN improved upon SHIPS during 
each year for the 24-hour predictions (a) and improved 
upon SHIPS for 13 out of 14 years for the 48-hour 
predictions (b). Mean skills for 24 hours are 6.22 m s-1 
for SHIPS and 5.93 m s-1 for the NN, an improvement of 
4.94%. This increase in skill is significant at the 95% 
level. Mean skills for 48 hour predictions were 9.47 m s-1 
for SHIPS and 9.09 m s-1 for the NN, an improvement of 
4.17%, also significant at the 95% level. Although the 



NN predictions were better than SHIPS for 8 out of the 
14 years, mean skills were 11.43 m s-1 and 11.45 m s-1 
for SHIPS and the NN, respectively, a statistically equal 
skill for both.   
  

 
Figure 2: Predictions from SHIPS (solid line) and NN 
(dashed line) for 24 hours (a), 48 hours (b) and 72 hours 
(c). NN skill increases over SHIPS at a 95% signifi-
cance level shown at 24 and 48 hours. No skill increase 
at 72 hours shown by either. 

 
4.  DISCUSSION 
 
In a previous study comparing Pacific hurricane intensity 
predictions using a linear regression scheme to NNs, 
error decreases of 7 to 16% were observed (Baik and 
Paek, 2000). The 4 to 5% decrease in errors with this 
study using Atlantic hurricanes show similar results. 
These findings suggest that NNs can improve upon 
hurricane intensity forecasting and presumably as more 
data from future years are incorporated in the training 
routine, NN skill should also improve. Apart from the 
increased skill in intensity predictions, NNs can also 
provide information on what relationship each input has 
with other parameters. As discussed in Section 2.2, the 
only input that was removed from the NN training set but 

used in SHIPS was the squared function of POT. As 
expected, several of the independent variables showed 
quadratic characteristics and as shown in Fig. 3 the 24 
hour forecast relating Maximum Potential Intensity (MPI) 
to wind speeds show a plateau of wind speed 
predictions at higher MPIs. This also agrees with results 
by DeMaria and Kaplan (1994, Fig. 2) suggesting the 
same phenomenon. Unfortunately, their theory (1999) 
that the negative regression coefficient found for POT2 
was attributed to the fact that smaller storms with large 
POT may not have the ability to intensify as much as 
bigger storms was not found by the NN.  

 
Figure 3: Plot of NN 24-hour predicted intensity (m s-1). 
All inputs were equal to their mean except POT which 
was allowed to vary and initial wind speed which was 
set at 54 m s-1. 

 
5.  REFERENCES 
 
Baik, J-J. and J-S Paek, 2000: A neural network model 
for predicting typhoon intensity. J. Meteor. Soc. Japan, 
78, 857-869. 
 
DeMaria, M., and J. Kaplan, 1999: An updated statistical 
hurricane intensity prediction scheme (SHIPS) for the 
Atlantic and Eastern North Pacific basins. Wea. and 
Forecasting, 14, 326-337. 
 
_________ and J. Kaplan, 1994: Sea surface 
temperature and the maximum intensity of Atlantic 
tropical cyclones. J. Climate: 7, 1324–1334. 
 
Hagan, M.T., H.B. Demuth and M.H. Beale, 1996: 
Neural Network Design, Boston, MA: PWS Publishing. 
 
6.  ACKNOWLEDGMENTS 
 
This author would like to thank Mark DeMaria and John 
Kaplan for the predictor data used in the SHIPS 
regression scheme, and to my advisor, Dr. Lynn Shay. 
Research support is provided by NSF. 


