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1. INTRODUCTION 
The operational 4D-Var data assimilation system 

(Rabier et al. 2000) at the European Centre for Medium-
Range Weather Forecasts (ECMWF) is gradually being 
enhanced for the use of frequent and high-density data 
and for assimilation of cloud and rain information at 
relatively high analysis resolution. A more accurate and 
efficient 4D-Var solution algorithm was implemented in 
January 2003, and a new humidity analysis (Hólm et al. 
2002) was implemented in October 2003.  
 

An important trend in the development of the 4D-
Var data assimilation system is the rapid increase in the 
use of satellite data (Thépaut and Andersson 2003). 
The additional data contribute significantly towards 
improved analysis accuracy (Simmons and 
Hollingsworth 2002). However, very dense or very 
frequent observations can reduce the rate of 
convergence of the iterative solution algorithm 
(Andersson et al. 2000), adding substantial 
computational load to 4D-Var, or requiring limiting the 
accuracy of the solution at fixed computational cost. In 
4D-Var the main computational expense is related to 
minimizing an objective cost function. This is currently 
done at T159 resolution (~120 km) having first 
compared the observations against short-range forecast 
fields produced by the operational T511 (40 km) model. 
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2. THE REVISED 4D-VAR ALGORITHM 

In January 2003, with the increasing data volumes 
in mind, the 4D-Var solution algorithm was 
comprehensively revised to improve its accuracy and 
efficiency. Future increases in analysis resolution (to 
T255 or higher) should be possible with the new 
algorithm. A schematic is shown in Figure 1. Following 
an approach implemented at Météo-France (Veersé and 
Thépaut 1998), the new solution algorithm first solves 
the 4D-Var problem approximately at low resolution 
(T95). This provides an accurate preliminary analysis for 
subsequent calculations at full analysis resolution 
(T159), thereby reducing the number of computationally 
expensive iterations that must be performed at full 
resolution. The low-resolution (T95 and T159) model 
fields and their evolution over the 12-hour assimilation 
period are now generated through interpolation of a 
high-resolution (T511) forecast for improved consistency 
(Figure 1),  (Trémolet 2003). 

 
In addition, information gleaned during the T95 step 

about the “shape” of the analysis cost function is used to 
accelerate (“precondition”) the T159 minimization 

(Appendix B of Fisher and Andersson 2001). The 
iterations are carried out until an objective stopping-
criterion is reached, ensuring that the solution is 
reached to within similar error bounds from day to day in 
the operational suite. The scheme was further modified 
to take advantage of the conjugate gradient algorithm, 
which is an efficient minimizer for this type of 
application. The revised 4D-Var furthermore generates 
its estimate of analysis error simultaneously with the 
actual analysis (rather than in a separate calculation), 
which also contributes to the efficiency gains. 

 
Figure 1 Schematic of the revised 4D-Var solution 
algorithm implemented in January 2003. Outer loops are 
performed at high resolution (T511) using the full non-
linear model (blue). Inner iterations are performed at 
lower resolution (first T95, then T159) using the tangent-
linear forecast model (yellow), linearized around a 12-
hour succession of model states (‘the trajectory’) 
obtained through interpolation from high resolution (S 
denotes the truncation operator, J the cost function and 
x the atmospheric state vector). From Trémolet (2003). 

 
Figure 2 shows an example of analysis increments 

calculated at T95 by the first outer-loop iteration (Figure 
2a) and the update calculated at T159 (Figure 2b) by 
the second (final) outer-loop iteration. The example is 
for temperature at model level 50. It shows that most of 
the increment is formed at T95, with finer-scale and 
smaller additions or corrections obtained from the T159 
iterations. 



 
 

 
Figure 2 Analysis increments for temperature (0.2 K 
contours, positive in red and negative in blue) at model 
level 50 (~880 hPa), 20020925 at 00 UTC, produced by 
the  (a) T95 and (b) T159 iterations of the revised 4D-
Var solution algorithm. The total analysis increment is 
the sum of the two. Most of the increment is formed at 
the lower resolution with smaller additions and 
corrections obtained at the higher resolution. 

 
3. THE NEW HUMIDITY ANALYSIS 

A new formulation of the humidity analysis has 
been developed (Hólm et al. 2002). Humidity is in many 
respects a harder quantity to analyze than wind and 
temperature, for example. Humidity errors show large 
variability over short distances and can vary with several 
orders of magnitude in the vertical. The analysis needs 
to respect the physical limits due to condensation 
effects near saturation and the strict limit at zero 
humidity. A large set of 3-hour forecast differences, 
generated by an ensemble of data assimilations with 
randomly perturbed observations (Fisher 2003a), 
provided ample data for study of short-range forecast 
error distributions for humidity, and various transformed 
humidity variables. It was found that when error 
distributions were stratified according to the value of the 
relative humidity they were easier to approximate with a 
Gaussian function. Based on these findings, following 
the approach suggested by Dee and DaSilva (2003), a 
normalized relative humidity variable was chosen as the 
new analysis variable for the revised humidity analysis. 

The asymmetries in error distributions for conditions 
near zero humidity and near saturation are also 
accounted for. The resulting error standard deviations in 
terms of either specific or relative humidity are thereby 
strongly dependent on the atmospheric state (Figure 3). 
The humidity variable transform has been implemented 
in the background constraint of 4D-Var. It has been 
verified that the new humidity analysis in a broad sense 
gives the correct weight to all humidity sensitive 
radiance data (HIRS, SSMI, Meteosat, GOES, AMSU-B) 
and also to SYNOP 2m-relative humidity and 
radiosonde specific humidity data. Data impact studies 
(OSEs) for these main types of humidity data are now 
being carried out. 
 

 
Figure 3 Humidity background error at level 44 (~700 
hPa) in terms of relative humidity (shaded, see legend), 
20030524-15 UTC.  Geopotential at 1000 hPa is 
contoured in black (4 dm interval) and the blue contour 
shows cloud fraction = 0.5.  The new statistical model 
for humidity background errors assigns low (orange) 
relative-humidity error standard-deviations within the 
cold-air outbreak and within frontal clouds, and high 
background errors (green) e.g. within the depression. 

 
 
4. DATA USAGE 

Radiance data from several additional spacecraft 
have been introduced in recent years (Thépaut and 
Andersson 2003). Figure 4 shows the continuing 
increase in the number of data used per 3D or 4D-Var 
assimilation cycle (at 12 UTC) over the last seven years. 
Current numbers are in excess of 1,600,000 data per 
cycle – a 20-fold increase compared to the operational 
3D-Var system in 1997. With the introduction of AIRS 
data in October 2003 the total has risen further, to 
~3,500,000 data per assimilation cycle.  
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Figure 4 Number of observational data used in 
ECMWF's operational system per assimilation cycle 
(millions): 6-hourly 3D-Var (yellow), 6-hourly 4D-Var 
(green), 12-hourly 4D-Var (blue) and since the 
operational change (red) implemented 14 January 2003. 
A further substantial increase (to about 3.5 million) 
occurred when AIRS data were activated in October 
2003. 

  
5. THE BACKGROUND TERM 

A new set of background-error statistics has been 
derived based on an ensemble of 4D-Var assimilations 
(Fisher and Andersson 2001; Fisher 2003a). The new 
statistics have smaller amplitude reflecting the improved 
accuracy of the assimilation system, especially in the 
stratosphere. The error structures described are 
generally sharper in both the horizontal and the vertical, 
which is partly due to the increased availability of 
observations.  

 
The dynamical balance between wind and mass 

analysis increments was improved to account for the 
effects described by the non-linear balance equation 
and the quasi-geostrophic omega equation (Fisher 
2003a). This is likely to be of particular importance in 
ageostrophic flows near jet-streams (Figure 5) and in 
the tropics. 

 
6. THE REDUCED-RANK KALMAN FILTER 

A possible shortcoming of earlier attempts to 
formulate a reduced rank Kalman filter (RRKF) was that 
the subspace used to define the flow-dependent 
covariance matrix for one cycle of analysis evolved to 
be nearly orthogonal to the subspace used at the next 
cycle (Fisher and Andersson 2001). As a consequence, 
much of the flow-dependent covariance information was 
thrown away each cycle. 

 
To overcome this problem, a new formulation of the 

RRKF has been developed, based closely on the 
"reduced order Kalman filter" (ROKF) described by 
Farrell and Ioannou (2001a, 2001b). The ROKF applies 
a technique from robust control theory, which defines an 
oblique projection onto a subspace that, in a well-
defined sense, optimally captures the preferred 
responses and forcings of the model dynamics. The 

technique is called balanced truncation, and in recent 
years has become a well-established element of 
modern control theory. By using a subspace that 
represents both the optimal forcings and the optimal 
responses of the dynamics, the ROKF ensures that the 
evolved covariance information is retained in the 
subspace, and is propagated to the next cycle of 
analysis. 

 

 

 
Figure 5 Analysis increments due to a single height 
observation at 300 hPa near a jet entrance, 20020514-
09 UTC. The wind speed is colour-shaded in 10 m/s 
bands according to the legend (orange is 50-60 m/s). 
The wind increments are shown as arrows and the 
contours indicate their divergence (red) and 
convergence (blue). In this case the single height 
observation lowers the geopotential (not shown) at the 
jet entrance resulting in cyclonic wind increments. The 
revised 4D-Var (lower panel) produces a 
convergence/divergence pattern consistent with the 
secondary circulation expected in the region of a jet-
entrance, in contrast to the previous version (top). The 
analysis response to observations can thus be strongly 
dependent on the atmospheric flow.  

 
Several months of analysis experimentation have 

been conducted with ROKF in a range of configurations 
(Fisher et al. 2003). However, the impact on forecast 
scores has remained stubbornly neutral. It seems likely 
that the explanation for the lack of impact of the ROKF 
(and probably for the RRKF too) is that too small a 
subspace was used. Two pieces of evidence support 
this explanation. First, the method of balanced 
truncation provides bounds on the truncation error of the 
model dynamics as a function of the Hankel singular 
values corresponding to the neglected directions in 
phase space. By extrapolating the rate of decay of the 
leading Hankel singular values, it is possible to give a 
rough estimate of the truncation error. The calculation 



suggests that at least a few thousand vectors would be 
required to give an accurate truncation of the model 
dynamics. 

 

 
The second piece of evidence comes from analysis 

of a large sample of forecast differences taken from the 
ERA-40 reanalysis. Differences between 36h and 12h 
forecasts verifying at the same time were used. The 
differences were truncated to a spectral resolution of 
T42. It was found that a projection of one forecast 
difference onto the preceding 2500 forecast differences 
was only around 50%. This shows that the dimension of 
subspace required to produce a good approximation to 
the static covariance matrix of forecast differences (a 
popular surrogate for background error) is at least few 
thousand. 

Figure 6 Observation Influence, (or self-sensitivity, 
Cardinali et al. 2003) of surface pressure SYNOP data 
valid for 13 February 200312 UTC, in ECMWF’s 4D-Var. 
The influence of individual data is large in data-sparse 
regions, and for isolated stations.  

Subspace dimensions of thousands of vectors are 
not computationally feasible with current computers, 
since they require thousands of integrations of the 
tangent linear model at every analysis cycle. A glimmer 
of hope is provided by the fact that when the analysis of 
forecast differences was repeated using differences that 
were restricted to a limited horizontal domain of 1000 
km x 1000 km, the projection of a given forecast 
difference onto the preceding 200 vectors was around 
90%. It appears from this finding, that some form of 
localization of the background co-variances is 
necessary. It is not clear how to do this for a 
deterministic subspace based on singular vectors. 
However, we note that such localization techniques are 
an important component of a number of 
implementations of the ensemble Kalman filter (EnKF). 

Recently, the diagonal elements of the Influence 
matrix has been used to highlight areas that may 
contribute to poor convergence in the analysis, known 
also as the ill-conditioning problem. It has also been 
shown that the trace of the influence matrix is a 
measure of the information content extracted from the 
observations by the analysis scheme (Figure 7). This 
trace is sometimes referred to as degrees of freedom for 
signal (DFS). It should be noted that this measure of 
information content does not necessarily correspond to 
forecast impact. A large part of the information in HIRS 
and SSMI (Figure 7) is with respect to humidity, and 
parts of the AMSU-A information is in stratospheric 
temperature.  

 

Information Content

0%

5%

10%

15%

20%

25%

Sy
no
p

D
rib
u

Pa
ob

Q
ui
kS
C
A
T

A
ire
p

Sa
to
b

Te
m
p

Pi
lo
t

A
m
su
a

H
irs

Ss
m
i

G
oe
s

M
et
eo

O
zo
ne

 

 
7. DIAGNOSTICS OF THE 4D-VAR SYSTEM 

Different types of diagnostic can be obtained from 
the ‘influence matrix’ (Cardinali et al. 2003), which in 
statistical regression models is used to measure the 
leverage of the observations. The diagonal elements of 
the influence matrix represent the analysis sensitivity to 
the observations, and are called ‘self-sensitivities’. Self-
sensitivities for SYNOP surface pressure observations 
are shown in Figure 6. Each box indicates the 
observation influence at the observation location.  Low-
influence data points have large background influence, 
which is the case in data-rich areas such as North 
America and Europe (observation influence ~ 0.2). In 
data-sparse areas observations have larger influence: in 
the Polar regions, where there are only few isolated 
observations, self-sensitivity is close to 1 and the 
background has small influence in the analysis. 

Figure 7 Information content i.e. degree of freedom for 
signal for the main data types in the assimilation. From 
Cardinali et al. (2003). 

Another method that allows accurate global 
calculation of DFS for the complete 4D-Var system has 
been developed by Fisher (2003b). For example the 
diagram shown in Figure 8 indicates that more 
information is extracted from observations with 
increasing analysis resolution. In particular, an increase 
of inner-loop resolution from T159 (current) to T255 
(planned for 2004/05) would significantly increase DFS 
of 4D-Var. The calculations are based on current 
background error statistics and current used 
observations (January 2003). 
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Figure 8 Degrees of freedom for signal (DFS) is a 
measure of information content in the analysis. A newly 
developed method (Fisher 2003b) allows efficient 
calculation of DFS for the global 4D-Var system. The 
diagram shows that the information extracted from 
available data increases as the inner-loop resolution of 
the analysis increases. An increase beyond the current 
operational resolution (T159) to T255 or higher, would 
allow additional information to be extracted from the 
available observations.   

Figure 9 The forecast ranges at which the monthly-
mean anomaly correlations of 500 hPa height forecasts 
for the extratropical northern hemisphere reach a set of 
values form 99% to 50%, based on ECMWF operational 
forecasts from January 1980 to July 2003. The colored 
curves denote actual values plotted as two-year running 
means, each point on the graph representing the 
average over the preceding two years. The black 
dashed curves show displacements of the curve for the 
97% level from January 1996 onwards. The curves are 
displaced so as to match actual values for each 
percentage level for January 1996. (From Simmons 
2003). 

8. EVOLUTION OF FORECAST ERRORS 
Figure 9 provides indication of the link between 

reducing forecast error in the very short range (and by 
implication reducing analysis error) and reducing error in 
the medium range. It shows smoothed time series of the 
ranges at which ECMWF’s operational 500 hPa height 
forecasts have reached certain levels of anomaly 
correlation over the past decades (Simmons 2003; 
Simmons and Hollingsworth 2002). In recent years the 
improvement of forecasts as measured by the increase 
in these forecast ranges has been by an amount that 
varies little beyond a day or so ahead. Improvements in 
medium-range 500 hPa height forecasts thus appear to 
have stemmed directly from model, analysis and 
observing-system improvements that have reduced 
analysis and short-range forecast error. 
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