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1. INTRODUCTION

The rarity of severe coastal hurricanes implies that data
are sparse and likely unreliable for empirical modelling.
Extreme value theory provides a framework for statis-
tical modelling rare wind events and a Bayesian ap-
proach allows the inclusion of measurement error and
other sources of uncertainty. The utility of the Bayesian
approach for modelling the mean number of coastal hur-
ricanes is shown in Elsner and Jagger (2004). But, be-
cause parameter estimates in extreme value analysis are
sensitive to rare events, the ability to include long historical
records is particularly important. Here we are interested
in estimating the upper limit of hurricane wind speeds af-
ter landfall. The goal is to demonstrate the usefulness of
the Bayesian approach for this purpose.

2. EMPIRICAL DISTRIBUTION OF INLAND HURRI-
CANE INTENSITY

Because the reanalysis of the HURDAT dataset does not
yet contain a complete listing of landfalling events by lo-
cation, time, and intensity, we develop an objective tech-
nique for estimating the wind immediately after landfall.
First, a natural spline interpolation is used to obtain po-
sitions and wind speeds at 1-hr intervals from the 6-hr
values for all tropical cyclones in HURDAT. Second, the
maximum wind speed at the first inland location based
on the 1-hr intensity interpolations is considered the max-
imum inland tropical cyclone intensity. U.S. landfall oc-
curs when the hurricane’s eye wall passes directly over
the coast or crosses the border from Mexico. Cyclones
passing over the Florida Keys, the Outer Banks of North
Carolina, etc are excluded as they are not inland pene-
trating storms. Third, second landfalls occurring within 48
hr of the first landfall are ignored.

Figure 1 shows the empirical distribution of maximum
hurricane wind speeds within 1 hr after landfall from the
211 inland penetrating events over the period 1851–2002
using the objective criteria described above. The majority
(143 or 67.8%) of hurricanes have peak winds at or below
90 kt with only a few exceeding 124 kt (6 or 2.8%).

3. EXTREME VALUE THEORY

In the absence of empirical or physical evidence for as-
signing an extreme level to a process, an asymptotic ar-
gument is used to generate extreme value models. But,
extreme values are scarce making it necessary to esti-
mate rare levels that are much higher than what already
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Fig. 1: Empirical distribution of maximum wind speed imme-
diately after landfall. Counts are based on hurricanes making
direct landfall in the continental United States over the period
1851–2002, inclusive. The maximum wind speed is estimated
from the first on-land position using a natural spline 1 hr interpo-
lation of the 6 hr HURDAT positions and intensities. Hurricanes
affecting only the Florida Keys, Outer Banks of North Carolina,
Long Island in New York, and Massachusetts’ Nantucket Island
are excluded.

have been observed. Extreme value analysis requires an
estimation of the probability of events that are more ex-
treme than any that have already been observed. This
implies an extrapolation from observed levels to unob-
served levels. Extreme value theory provides a family of
models to make such extrapolation.

Consider observations from a collection of inde-
pendent and identically distributed random variables in
which we keep only those observations that exceed a
fixed threshold value. The generalized Pareto distribution
(GPD) family represents the limiting behavior of this new
collection of random variables. This makes the family of
GPD a suitable choice for modelling extreme events. Ob-
servations below the threshold value are removed from
the analysis. The choice of threshold is a compromise
between retaining enough observations to properly esti-
mate the distributional parameters, but few enough that
the observations follow a GPD. Here we choose 64 kt as
the threshold based on examination of linearity in a plot
of mean excess versus threshold. The mean excess is
the expected value of the amount that the observations
exceed the threshold. Moreover, we assume that the con-
ditional distribution of the observed wind speed given both
the true wind speed and the parameters depends only on



the true wind speed. Thus, given the true wind speed, the
observed wind speed is uniformly distributed between the
true value plus or minus 2.5 kt to reflect the 5 kt precision
used on the majority of storms in HURDAT. Incorporation
of the measurement error into our extreme value models
is accomplished using a Bayesian approach.

4. BAYESIAN APPROACH

The Bayesian approach provides a context in which to
incorporate measurement error and prior beliefs into the
model. It allows a complete picture of the distribution of
the extremal quantities. Extremal quantities of interest
include the distribution of return levels and the joint distri-
bution of the parameters. More technically, the Bayesian
approach allows us to supply parameter posteriors when
classical methods fail. For example when the shape pa-
rameter ξ is less than or equal to−0.5, the MLE cannot be
used to determine the distribution of the parameter values
(Coles 2001).

We employ an hierarchical specification in which the
conditional distribution of the observed maximum wind
speed within 1 hr after landfall depends only on the true
wind speed wi and the conditional distribution of wi de-
pends only on the distribution of the parameters. Math-
ematically, let unif(a, b) represent the uniform distribution
with limits a and b, let gpd(ξ, σ) represent the GPD with
parameters ξ and σ, let mvnorm(µ,Σ) be the multivariate
normal distribution with mean µ and covariance matrixΣ,
and let u represent the threshold value, then our specifi-
cation is:

yi ∼ unif(wi − 2.5, wi + 2.5)

wi ∼ u+ gpd(σ, ξ)

log(σ) = β1

ξ = β2

[β1, β2] ∼ mvnorm(µ,Σ)

µ = [3.5,−0.5]

Σ =

[

100 0
0 100

]

Since we use a fixed threshold, the likelihood for the
threshold exceedance rate and the GPD can be sepa-
rated. If the rate prior is independent of the GPD param-
eter priors, then the posterior parameter samples of the
rate will be independent of those for the GPD parameters.
This allows us to use two separate models, one for the
GPD parameters, and another for the exceedance rate.
From these models we generate sample rates and sam-
ple GPD parameters, which allows us to generate a series
of sample seasons.

The hierarchical Bayesian specification combines the
prior with the GPD as the likelihood to generate posterior
estimates for βσ and βζ . This is accomplished using the
Bayesian inference using Gibbs sampler (BUGS). BUGS
is a software for the Bayesian analysis of complex sta-
tistical models using Markov chain Monte Carlo (MCMC)
methods. Currently, BUGS does not have support for the
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Fig. 2: Return levels for 2-, 5-, 10-, 20-, 50-, 100-, 200-,
500-, and 1000-year hurricane winds. Return levels are in knots
representing the maximum U.S. hurricane wind speed within 1 hr
after landfall. The box plot indicates the median value (dot), the
interquartile range (box limits) and the 10th and 90th percentiles
(whiskers) of the return levels.

GPD, which requires us to make several changes. To en-
sure stability of the results we run the Gibbs sampler for
30K updates and discard the first 10K as burn-in. The
return-level plot (Fig. 2) shows the distributions of return
levels for 2-year, 5-year, 10-year, 20-year, 100-year, 200-
year, 500-year, and 1000-year inland hurricane winds.
Up to a point, the longer we wait the higher the return
level. On average we can expect 80 kt hurricane winds in
the U.S. every 2 years and 122 kt winds every 20 years.
Since P (ξ ≥ 0) is less than 2.2% in the model, coastal
hypercanes are not possible under the assumption that
the extreme near-coastal winds follow a distribution from
the GPD family.

The model can be improved by incorporating factors
such as the ENSO and NAO. Statistical significance can
be examined using the notion of model selection which
amounts to determining the most reasonable model given
the data. In this regard, when using a Bayesian approach
the Deviance Information Criterion (DIC) plays the same
role as Akaike’s Information Criterion (AIC) aiming to iden-
tify models that best explain the observed data.
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