11C.7

# SEASONAL PREDICTION OF U.S. LANDFALLING HURRICANE WIND ENERGY FROM 1 AUGUST

Mark A. Saunders\* and Adam S. Lea Benfield Hazard Research Centre, University College London

### 1. INTRODUCTION

Hurricanes rank historically above earthquakes and floods as the major geophysical cause of property damage in the United States. The annual mean damage bill and its standard deviation for hurricanes striking the continental US 1950-2002 is US \$ 4.8 billion and US \$ 7.7 billion respectively. Skillful seasonal prediction of US landfalling hurricane activity would benefit business, government and society by forewarning of damage and disruption. However, significant seasonal landfalling skill has not been reported to date. This contrasts with the demonstrated significant skill for the seasonal prediction of North Atlantic hurricane activity from 1 August. Here we show that seasonal US landfalling hurricane wind energy 1950-2002 is predictable from the 1 August start of the main Atlantic hurricane season with significant (p < 0.01) and useful skill. Predictability arises from a largescale pattern of North Atlantic tropospheric wind variability in July which establishes persistent steering winds that either favour or hinder US hurricane landfall. Predictions from this model are linked significantly ( $p \sim$ 0.01) to US hurricane economic and insured losses 1950-2002, and offer application to business.

## 2. DATA AND METHODOLOGY

We use the National Oceanic and Atmospheric Administration Accumulated Cyclone Energy (ACE) index as our measure of landfalling hurricane wind energy and define this as the US ACE index. This index reflects a combination of intensity and duration and thus is a better measure of 'overall landfalling activity' than the more widely used numbers of tropical storms, hurricanes or intense hurricanes making US landfall. Tropical storm and hurricane maximum sustained wind data are obtained from the US National Hurricane Center's North Atlantic hurricane database. Our analysis uses monthly wind data averaged between 925 and 400 millibars (mb) (about 750 to 7000m above sea level) from the National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis during 1950-2002. The motion of hurricanes is determined by height-averaged winds between these levels. US hurricane economic and insured loss data are obtained from Pielke and Landsea (1998) and from Collins and Lowe (2001) respectively for the period 1950-2002. All correlation coefficients (r) refer to the Pearson product-moment coefficient of linear correlation unless otherwise stated.

### 3. RESULTS

The third empirical orthogonal function (EOF) of the July 925-400mb height-averaged *u*-wind (zonal or eastwest wind) over the North Atlantic, Caribbean Sea and Gulf of Mexico has a significant and stationary link to the US ACE index 1950-2002 (not shown). The strength and significance of the vector wind anomalies associated with this lagged mode match closely those linked to the US ACE index (not shown). The third EOF of the height averaged *u*-wind has a tri-pole structure with wind anomalies directed either towards or away from the US East Coast at latitudes between 20°N and 40°N and zonal wind anomalies of opposite sign at higher and lower latitudes. The wind steering associated with this mode either favours or hinders the US landfall of hurricane wind energy.

We assess the seasonal predictability of the US ACE index using cross-validated hindcasts with 5-year block elimination applied to two different linear regression models: the 'July height-averaged u-wind model' and the 'North Atlantic total ACE index model'. The former employs the PC of the third EOF of the July July *u*-wind, PC3, as the sole predictor. The latter uses the observed ACE index at sea (known from ~ 1 December) as the predictor. Hindcast skill is computed using two skill measures: the correlation (r) between the hindcast and observed values, and the mean square skill score (MSSS) defined as the percentage reduction in mean square error of the model hindcasts compared to hindcasts made with the 1950-2002 mean or climatology value. p-values are computed from bootstrapped estimates of r.

Table 1 compares the hindcast skill for different time periods from the two models. Using the July heightaveraged *u*-wind model, the US ACE index (landfalling hurricane wind energy) is predictable from the 1 August start of the main Atlantic hurricane season with a correlation skill of ~0.5 and a skill improvement over climatology of 20-25%. This skill is significant to p < 0.01over the 1950-2002 period and to p < 0.05 over each of the sub-periods 1950-1976 and 1977-2002. The strength, significance and stationarity of hindcast skill from the July *u*-wind model matches that achievable from knowing the observed North Atlantic total ACE index at the official hurricane season end on 30 November. A scatter plot of observed US ACE index versus hindcast US ACE index is shown in Figure 1 for the depth-averaged July u-wind model. 92% (24 out of 26) of the below median hindcasts correspond to actual values in the lower or average terciles, while 85% (22 out of 26) of the above median hindcasts correspond to actual values in the upper or average terciles. Furthermore the model correctly anticipates 89% (16 out of 18) of actual values in the upper tercile as above

<sup>\*</sup> Corresponding author address: Department of Space and Climate Physics, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT, UK; e-mail: mas@mssl.ucl.ac.uk.

median and 78% (14 out of 18) of actual values in the lower tercile as below median.

|                     |           | Hindcast skill and significance |      |                 |
|---------------------|-----------|---------------------------------|------|-----------------|
| Prediction<br>model | Period    | MSSS<br>(%)                     | r    | <i>p</i> -value |
| July PC3<br>u-wind  | 1950-2002 | 23                              | 0.49 | 0.007           |
|                     | 1950-1976 | 24                              | 0.48 | 0.03            |
| 925-400 mb          | 1977-2002 | 23                              | 0.48 | 0.04            |
| Observed            | 1950-2002 | 23                              | 0.48 | 0.003           |
| North Atlantic      | 1950-1976 | 19                              | 0.43 | 0.02            |
| total ACE           | 1977-2002 | 28                              | 0.53 | 0.01            |

Table 1. Predictive skill for the seasonal US ACE index (landfalling hurricane wind energy). The Table compares the strength, significance and stationarity in skill from two models. the July height-averaged *u*-wind model (hindcasts available from 1 August) and the North Atlantic total ACE index model (hindcasts from  $\sim$  1 December). Skill significance is shown for the *r* measure.

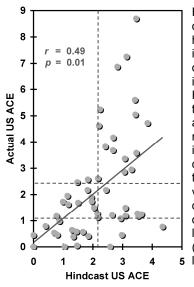



Figure 1. Scatter plot of cross-validated hindcast US ACE index versus observed US ACE index 1950-2002. Hindcasts are from the July heightaveraged u-wind model. The ACE unit is  $x10^4$  knots<sup>2</sup>. The dashed lines mark the hindcast median value (vertical dashed line) and the observed upper and lower tercile values (horizontal dashed 5 lines).

The US ACE index hindcasts offer sound potential for socio-economic benefit. Using the appropriate Spearman rank correlation, rrank, our early August US ACE index hindcasts are linked significantly ( $p \sim 0.01$ ) to US hurricane economic losses 1950-2002 (Pielke and Landsea, 1998) and to US hurricane insured losses 1950-2002 (Collins and Lowe, 2001). For economic losses:  $r_{rank} = 0.36$ ; p = 0.01. For insured losses;  $r_{rank} =$ 0.33; p = 0.02. These significant links to loss are evident also from Figure 2 which compares the hindcast US ACE index values against economic and insured losses stratified by year and above/below median value. For economic loss the hindcast model correctly anticipates the sign of 74% (20 out of 27) of the above median loss years and 73% of the below median loss years. For insured loss the hindcast model anticipates the sign of 70% (19 out of 27) of the above median loss years and

69% of the below median loss years. The two-tailed probability of obtaining the 2x2 contingency table of US ACE index hindcast and US economic loss by random chance is 0.001; for insured loss the probability is 0.006.

|              | (A) Economic Loss |      |                                | (B) Insured Loss |                       |      |                                |
|--------------|-------------------|------|--------------------------------|------------------|-----------------------|------|--------------------------------|
| Year         | <b>Hindcast</b>   | Loss | Loss (US \$)                   | Year             | Hindcast              | Loss | Loss (US \$)                   |
| 1992         | -                 | +    | 43,152,000,000                 | 1992             | -                     | +    | 29,016,728,835                 |
| 1954         | +                 |      | 22,845,000,000                 | 1954             | +                     |      | 17,900,989,200                 |
| 1955         | +                 |      | 17,204,000,000                 | 1965             | +                     |      | 13,648,961,535                 |
| 1965         | +                 |      | 16,557,000,000                 | 1989             | +                     |      | 6,710,833,935                  |
| 1960         | +                 |      | 15,918,000,000                 | 1964             | +                     |      | 5,769,253,080                  |
| 1969         | -                 |      | 14,298,000,000                 | 1960             | +                     |      | 5,595,328,260                  |
| 1972         | -                 |      | 13,978,000,000                 | 1970             | +                     |      | 5,413,513,710                  |
| 1989         | +                 |      | 13,436,000,000                 | 1979             | +                     |      | 5,058,608,580                  |
| 1979         | +                 |      | 11,264,000,000                 | 1983<br>1985     | -                     |      | 4,635,839,685                  |
| 1961<br>1964 | +                 |      | 9,339,000,000<br>9,193,000,000 | 1965             | +                     |      | 4,213,416,810<br>4,119,318,330 |
| 1964         | +                 |      | 8,661,000,000                  | 1995             | 1                     |      | 3,636,900,090                  |
| 1999         | +                 |      | 6,222,000,000                  | 1950             | +                     |      | 3,628,429,710                  |
| 2001         | +                 |      | 5,470,000,000                  | 1969             |                       |      | 3,498,390,180                  |
| 1983         | -                 |      | 5,289,000,000                  | 1955             | +                     |      | 2,887,893,585                  |
| 1995         | +                 |      | 4,860,000,000                  | 2001             | +                     |      | 2,615,000,000                  |
| 1996         | +                 |      | 4,544,000,000                  | 1996             | +                     |      | 2,464,532,190                  |
| 1970         | +                 |      | 4,352,000,000                  | 1999             | +                     |      | 2,382,634,470                  |
| 1998         | +                 |      | 4,327,000,000                  | 1998             | +                     |      | 2,003,554,155                  |
| 1950         | +                 |      | 3,659,000,000                  | 1957             | -                     |      | 1,394,029,260                  |
| 1957         | -                 |      | 3,187,000,000                  | 1959             | +                     |      | 1,189,865,610                  |
| 1967         | +                 |      | 2,673,000,000                  | 1972<br>1991     | -                     |      | 1,133,958,495                  |
| 1975<br>1991 | +                 |      | 2,290,000,000<br>2,234,000,000 | 1991             | +                     |      | 1,094,842,830                  |
| 1971         |                   |      | 1,580,000,000                  | 1975             | +                     |      | 927,940,320                    |
| 1994         | +                 |      | 1,340,000,000                  | 2002             | -                     |      | 635,000,000                    |
| 2002         |                   |      | 1,220,000,000                  | 1980             | -                     |      | 336,384,765                    |
| 1980         | -                 |      | 1,128,000,000                  | 1956             | -                     |      | 325,876,185                    |
| 1974         | -                 |      | 934,000,000                    | 1966             | -                     |      | 249,843,030                    |
| 1959         | +                 |      | 582,000,000                    | 1984             | +                     |      | 158,413,170                    |
| 1956         | -                 |      | 457,000,000                    | 1976             | -                     |      | 151,621,935                    |
| 1968         | -                 |      | 417,000,000                    | 1971             | +                     |      | 143,894,550                    |
| 1976<br>1958 | -                 |      | 400,000,000<br>290,000,000     | 1974<br>1968     | -                     |      | 140,590,770<br>114,799,245     |
| 1950         | +                 |      | 237,000,000                    | 1953             | +                     |      | 110,872,155                    |
| 1966         | -                 |      | 215,000,000                    | 1986             | -                     |      | 81,980,670                     |
| 1963         | +                 |      | 193,000,000                    | 1952             | -                     |      | 65,229,510                     |
| 1984         | +                 |      | 170.000.000                    | 1993             | -                     |      | 56,049,315                     |
| 1973         | -                 |      | 124,000,000                    | 1997             | -                     |      | 48,913,245                     |
| 1997         | -                 |      | 121,000,000                    | 1988             | +                     |      | 22,592,025                     |
| 1988         | +                 |      | 114,000,000                    | 1977             | -                     |      | 13,525,590                     |
| 1981         | -                 |      | 100,000,000                    | 1963             | +                     |      | 4,685,490                      |
| 1978         | -                 |      | 98,000,000                     | 1987<br>2000     | -                     |      | 594,870<br>0                   |
| 1990<br>1993 | +                 |      | 97,000,000<br>83,000,000       | 1994             | -                     |      | 0                              |
| 1993         | -                 |      | 82,000,000                     | 1951             | ÷                     |      | 0                              |
| 1962         |                   |      | 55,000,000                     | 1990             | +                     |      | ŏ                              |
| 1977         | -                 |      | 43,000,000                     | 1981             | Contract - Contractor |      | ŏ                              |
| 1986         | -                 |      | 38,000,000                     | 1978             | -                     |      | 0                              |
| 1953         | +                 |      | 36,000,000                     | 1958             | -                     |      | 0                              |
| 1982         | -                 |      | 35,000,000                     | 1982             | -                     |      | 0                              |
| 2000         |                   |      | 29,000,000                     | 1962             | -                     |      | 0                              |
| 1987         | -                 | -    | 18,000,000                     | 1973             | -                     | -    | 0                              |

Figure 2. Comparison of hindcast US ACE index with (A) US hurricane economic losses and (B) US hurricane insured losses 1950-2002. Hindcasts are from the July height-averaged *u*-wind model. The yearly value of each parameter is coded based upon whether it is above or below the median value with light grey indicating above-median and dark grey below-median. Rows are stratified vertically by economic loss (A) and by insured loss (B). The year (left column) is included for reference.

#### 4. SUMMARY

To our knowledge this is the first example of skill for predicting seasonal US landfalling hurricane activity. The skill is significant and stationary over the reliable record back to 1950. The model has a sound physical basis. It will benefit risk awareness and offers good potential for application in business decision making.

#### 5. REFERENCES

- Collins, D. J. and Lowe, S., A macro validation dataset for U.S. hurricane models, Casualty Actuarial Society, Winter Forum, pp. 217-252 (2001).
- Pielke, R. A., Jr., and Landsea, C. W., Normalised hurricane damage in the United States: 1925-1995. *Wea. Forecasting*, **13**, 621-631 (1998).