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Position errors are ubiquitous in forecasting local-
ized weather phenomena, affecting both objective anal-
ysis and verification. classical formulations for data-
assimilation will tend to distort the state when adjusted
variables do not have a direct impact on position errors,
especially in the presence of sparse observations. The
sources of position errors are poorly understood and in-
deed the somewhat crude current practice of bogussing
reflects the need to adjust for position errors.

We propose a novel formulation for handling position
errors in a preprocessing step to classical data assimila-
tion. In this step, called field alignment, the current model
state is spatially aligned with observations by adjusting a
field of local displacements. This is accomplished by solv-
ing an auxiliary variational optimization problem that in-
cludes a Tikhonov-type regularization constraint with two
physically valid weak constraints penalizing non-smooth
and divergent displacement-fields and this choice also
distinguishes our technique from most methods that seek
global constraints.

Further, in contrast to other alignment techniques, our
preprocessing step does not explicitly rely on the defi-
nition of a feature and displacements are defined in an
Eulerian frame and valid in the continuum. The align-
ment and amplitude adjustment can be interpreted in a
Bayesian formalism, albeit whose solutions require sev-
eral procedural simplifications including a two-step ap-
proach to assimilation; alignment followed by amplitude
adjustment, and an iterative solution for the non-linear
field alignment equation.

a. Field Alignment

Start by using auxiliary variables, local displacements, in
the observation equation to model the position errors, that
is
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the vector of posi-
tion indices and

�
a vector representation of a displace-

ment field. We define an quadratic objective (minimum
variance, MLE under Gaussian assumption), that slightly
modifies a “3D-VAR” objective:
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To estimate the true state, we use the Euler-lagrange
equations of

�
, but this produces highly non-linear func-

tions in C and D . A solution is sought by fixing the sec-
ondary dependent variable, thereby approximating the full
equations with an amplitude only equation and a dis-
placement only equation. We then adopt a sequential
approach: align the state with observations then resolve
the amplitude. The alignment equation is:E �E D F �HGI�?J %LK M N (PO N+Q�% 0 (/2 4��SR C J,	A�
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Where

Q
is the linearized observation operator andD FYX[Z]\ is the ^ 
 dimensional displacement associated

with the _a`�b position index c F . The optimal estimate d� of
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is then used in the “amplitude” equation:' ("2 46�
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Given a fixed displacement estimate d� , equation 3 is
the Jacobian of a 3D-VAR objective and so the amplitude
recovery is simply 3D-VAR. The choice of the constraint�

is critical to make this idea work. We posit that position
errors can be recovered as smooth flow fields and view
them as arising from systematic and large-scale errors,
particularly relevant in background flow errors. Smooth-
ness suggests a Tikhonov type formulation and, in par-
ticular,

�,	 D � is designed with local constraints; a gradient
penalty term and a divergence penalty term. That is,
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These are kinematic constraints, but ones that admit
“fluid-like” motions because they prescribe diffeomorphic
flows up to the first order1. With proper weighting, these
constraints handle rotations, translations, shears, skews
and stretches. The displacement equation, with first order
constraints, is as follows:

1Higher order diffeomorphisms can just as easily be config-
ured.



Figure 1: Analysis of a 2D field is shown with full and sparse observations, using 3D-VAR and the field alignment algo-
rithm combined with 3D-VAR. Under sparse observations, automatically aligning the fields first substantially improves
analysis.
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Phenomenologically, Equation 5 introduces a forc-
ing based on the residual between the model-field and
observation-field, modulated by the local brightness gra-
dient. The constraints on the displacement field allow
the forcing to propagate to a consistent solution. This
is an expressly Eulerian approach, individual features are
neither identified nor required for matching, although fea-
turedness or texture clearly influences the solution. The
deformation is defined on the continuum and evolves over
iterations.

Equation 5 is also non-linear, and is solved itera-
tively. During each iteration the forcing term is held con-
stant from the previous iteration and the resulting Poisson
equation is solved. The estimate of displacement at each
iteration is then used to deform the model-field and the
process is repeated again till a small residual is obtained
or an iteration limit is reached. The boundary condition
for this system is D F � W and, in certain atmospheric flows
such as the BVE (used here), periodic. The final field is� J 	��;
 d�=� and used as the initial guess for Equation 3.

In Figure 1 the performance of the two-step method
is shown. This figure consists of four columns. The left
column is the contour plot of truth, showing four vortices.
The second column depicts observations, the third is the

first guess and the fourth the analysis. The first guess
is scaled (in position of vortex centers) by a factor of 1.5
from the truth, is rotated by z|{~} , with a mean multiplica-
tive amplitude error of ��� z|{ at the vortex centers. The ob-
servations were generated from truth by introducing 1%
uncorrelated noise in amplitude. The background error-
covariance was substantially more uncertain than the ob-
servational uncertainty.

The first row of Figure 1 demonstrates the perfor-
mance of 3D-VAR with observations made at every grid
point. In this case, because the observational uncertainty
is so much smaller, the analysis is perfect. The first guess
snaps right to the observations. In the second row, the
performance of 3D-VAR with station observations (white
dots) is depicted. In particular, the analysis has a little re-
semblance to truth, but demonstrates substantial smear-
ing effect. To be sure, the effect seen here is not to be
interpreted as an “averaging” of two nearly equally un-
certain sources, but the inability of the background error
covariance to spread information from a sparse observa-
tion operator successfully. This has been argued to be
the major source of distortion of analysis under position
error. The third row depicts the performance of the two-
step algorithm developed here. The first guess is aligned
and then 3D-VAR is applied. The analysis produced is
much more realistic.

We believe, the proposed variational methodology can
significantly help practitioners produce smooth physically
valid alignments as the first guess in analysis, in a way
that accounts for hard to diagnose model errors.


