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In hurricane eyewalls the vertical stretching ef-
fect tends to produce an annular ring of high vor-
ticity. If narrow enough, such vorticity rings can be
very unstable. The end states of such instability can
be of three types: (1) a vorticity monopole (i.e., high
vorticity in the center); (2) a vortex crystal pattern
(i.e., several mesovortices locked in rigid rotation);
(3) a chaotic pattern of mesovortices. Which end
state is observed depends on initial conditions such
as ring diameter, ring width, and the magnitude of
the depressed vorticity inside the ring. In order to
better understand what types of flow patterns might
be expected in real hurricanes, we have performed
a systematic exploration of this “initial condition
phase space” with a barotropic model. This study
is an extension of the work of Schubert et al. (1999),
Kossin and Schubert (2001), and Wang (2002).

The numerical model used in all our experiments
is the f -plane version of the multigrid barotropic
model (MUDBAR) developed by Fulton (2001). Us-
ing Cartesian coordinates (x, y) the governing vor-
ticity equation and invertibility principle are
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where ζ is the relative vorticity, ψ the streamfunc-
tion. and ν the constant diffusion coefficient. The
model domain is the square defined by −L ≤ x ≤ L
and −L ≤ y ≤ L. We focus our attention on
flows involving vorticity rearrangement near the cen-
ter of the model domain. For such flows the far-
field circulation is unchanged from its initial ax-
isymmetric form. In order to minimize the per-
turbing influence of the boundary conditions, as
the boundary condition on (2) we require ψ(x, y) =
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[

(x2 + y2)
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on the boundary, where

Γ is the initial far-field circulation. According to
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this boundary condition, ψ = 0 at the four bound-
ary points (x, y) = (L, 0), (0, L), (−L, 0), (0,−L),
and ψ = Γ ln(2)/(4π) at the four corner points
(x, y) = (L,L), (−L,L), (−L,−L), (L,−L). Thus,
proceeding anticlockwise around the boundary there
are four boundary segments on which ψ is increas-
ing (inflow) and four boundary segments on which
ψ is decreasing (outflow). Since we must specify
ζ only on inflow, the boundary condition for (1) is
ζ(x, y) = 0 on the inflow boundary segments. These
boundary conditions for our square domain give es-
sentially the same results as requiring ψ = 0 on
the boundary of the circular domain with radius L.
It is interesting to note that these boundary con-
ditions allow us to use a smaller domain than is
required when using the doubly-periodic boundary
conditions associated with a Fourier spectral model.
In the spectral model the double periodicity can
induce an undesireable wavenumber four structure
near the center if the domain is not large enough.
On the other hand the boundary condition on ψ de-
scribed above is “axisymmetric,” so that, if there
is an induced error in the central region due to the
boundary condition, this error is in the sense of sup-
pressing asymmetry rather than enhancing it.

The numerical model uses the 4th order Runge-
Kutta scheme to advance in time and has the option
of 2nd or 4th order Arakawa Jacobian to approx-
imate the advection terms. It has multiple nests
within the base grid. In this study, the simulations
are run on a base domain of size 4096 km × 4096
km with 256 × 256 grid points. There are four sub-
sequent nests within the base domain, each of which
has half the domain size and mesh size of its mother
domain, so that the finest mesh is 256 km × 256 km
with a mesh size of 1 km. In some runs, the resolu-
tion was decreased to 128 × 128 grid points for the
base domain and each of the nests.

The initial condition for these experiments is
ζ(r, φ, 0) = ζ̄(r) + ζ ′(r, φ), where ζ ′(r, φ) is a small
perturbation of an axisymmetric vorticity field ζ̄(r).
The axisymmetric part of the initial field consists
of a vorticity ring, with zero vorticity at r = 0.
Twenty-nine experiments have been run, with ini-
tial rings having widths 4, 8, . . . , 116 km. All exper-
iments have the same far-field circulation.



Figure 1: The normalized enstrophy Z(t)/Z(0) as a function of t for 29 experiments with differing initial ring width.
The initial rings have widths 4, 8, . . . , 116 km, and are respectively labeled 1, 2, . . . , 29.

The general results can be described as follows.
Very wide rings (width ≥ 108 km) show azimuthal
wavenumber 2 structures initially, but never break
up into individual vortices. The central low vortic-
ity remains for at least 80 turnaround times. Wide
rings (24 ≤ width ≥ 104 km) break down into 2–5
vortices that gradually relax to a monopole. Thin
rings (width ≤ 20 km) initially break up into many
vortices (≥ 6) that rapidly merge into several vor-
tices (4–5). The resultant vortices persist for tens
of rotational timescales before subsequent merger
takes place. Such configurations can be referred to
as “meso-vortices” or “vortex crystals.”

The experiments display many of the character-
istics of 2D turbulence, for example the selective de-
cay of enstrophy over energy. As is easily derived
from (1), the enstrophy evolves according to
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∇ζ ·∇ζ dxdy is the palinstrophy. The palinstro-

phy, a measure of the overall vorticity gradient, can
surge to very large values as the instability develops,
resulting in a rapid decrease of Z(t). The curves
for normalized enstrophy Z(t)/Z(0) as a function of

t for the 29 experiments with differing initial ring
width are shown in Fig. 1. The curves labeled 1,
2, 3, 4, 5 are for the thin rings with widths 4, 8,
12, 16, 20 km, and the curves labeled 27, 28, 29 are
for the very wide rings with widths 108, 112, 116
km. The very thin rings show the largest enstrophy
decay, but with plateaus punctuated by rapid de-
creases associated with the merger of mesovortices.
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