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1. Introduction

This abstract summarizes a new theory for discrete
vortex Rossby (VR) waves in hurricane-like vortices.
Such waves include precessing tilts and elliptical de-
formations. By now, it is well-known that

(i) a VR wave can decay by stirring of
potential vorticity (PV) in its critical
layer, and

(ii) a VR wave can grow by exciting
outward-propagating inertia-buoyancy
(IB) waves in the environment.

Past theoretical work considered parameter regimes
in which either critical layer stirring or IB wave emis-
sion was negligible. Here, we derive a formula for
the growth rate of a VR wave that accounts for both
competing processes.

Our new theory provides a more complete frame-
work for analyzing any aspect of tropical cyclone
dynamics that involves discrete VR waves, such as
response to environmental shear.

2. Model

For this study, we consider a relatively simple model
of a tropical cyclone. The unperturbed cyclone is
barotropic and in gradient balance. It is character-
ized by a radius rv, a vertical thickness H, and a
Rossby number Ro > 1. The angular velocity [Ω̄(r)]
and PV [q̄(r)] decrease monotonically with radius
r. The atmosphere is dry and stably stratified. The
Coriolis parameter f and buoyancy frequency N
are both constant. The top and bottom boundaries
of the cyclone have uniform potential temperature.
The boundary at r = rv allows for the radiation
of energy and angular momentum. Perturbations
are governed by 3D linearized primitive equations,
which employ the adiabatic, hydrostatic and Boussi-
nesq approximations.
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3. Growth Rate Formula

In Ref. [1], we derive a formula for the growth rate
of the amplitude a of a discrete VR wave, as a
corollary to conservation of wave activity (angular
pseudomomentum). The detailed result is given
below:
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Here, U(r), V (r), Φ(r) and Q(r) are the radial
wave functions for radial velocity, azimuthal veloc-
ity, geopotential height and PV, respectively. The
integers m and n denote the vertical and azimuthal
wave-numbers, and <[. . .] is the real part of the
quantity in square brackets. The symbol r∗ denotes
the critical radius, defined by

Ω̄(r∗) ≡ ω/n, (5)

where ω/n is the angular phase-velocity of the wave.
It is assumed that r∗ < rv. The radial integral −

∫

excludes a thin critical layer, centered at r∗. Note
that we have used the following definition of PV:
q ≡ (~ζ + fẑ) · ∇∂z(φ/N2), where ~ζ is the vorticity
of the horizontal flow, φ is the geopotential height,
and ∇ is the 3D gradient operator.

The weight M of a discrete VR wave is generally
positive. Accordingly, the sign of εrad − εcl deter-
mines the sign of the growth rate γ. The radiation
term εrad is proportional to the outward flux of
relative angular momentum at rv. This flux is
positive, since angular momentum leaves the vortex
by a frequency-matched, outward propagating IB
wave. The critical layer term εcl is positive, since
dq̄/dr∗ is negative. Moreover, it increases with the
magnitude of dq̄/dr∗. As a result, there is a critical
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Figure 1: Growth rate of a discrete VR wave in a mono-
tonic cyclone, with variable PV gradient at r∗. The
Rossby number (Ro) and Froude number (Fr) of the
cyclone are both 10, assuming the definitions Ro ≡

2Ω̄(0)/f and Fr ≡ 2πroΩ̄(0)/NH, where ro is the ra-
dius of the vortex core. In the plot, the growth rate γ
is normalized to 2Ω̄(0), and the PV gradient dq̄/dr∗ is
normalized to 2Ω̄(0)/ro. The text explains the difference
between circles and cross-hairs.

magnitude of dq̄/dr∗, below which the wave will
grow (γ > 0), and above which it will decay (γ < 0).

4. Verification

Figure 1 shows the growth rate of a VR wave in
a monotonic cyclone, with variable PV gradient at
r∗. This particular wave represents a precessing tilt.
The plot shows two solution sets for the growth rate.
The circles were obtained from a numerical solution
to the vortex eigenmode problem.† The cross-hairs
were obtained from the analytical growth rate for-
mula [Eq. (1)] of the previous section. Apparently,
this formula is correct.

Moreover, this plot nicely illustrates the compe-
tition between critical layer stirring, and IB wave
emission. If there is zero PV gradient at r∗, the VR
wave slowly destabilizes by emitting IB waves into
the environment. As the PV gradient at r∗ increases,
γ decreases. Once the magnitude of dq̄/dr∗ exceeds
a small threshold, the VR wave decays.

5. Balanced Dynamics

Despite their neglect of IB waves, balance models
seem to adequately describe the dynamics of VR
waves in some hurricane-like vortices.2,3 This
result is a bit surprising, because VR waves in a
hurricane can (in principle) resonantly excite IB

†For cases in which γ < 0, the wave is actually a quasi-
mode. The complex frequency of a quasi-mode is found by
the solution to a generalized eigenmode problem, described
in Ref. [1].

waves in the environment. Equation (1) provides a
possible explanation. We posit that, for the vortices
examined, dq̄/dr∗ is sufficiently large that critical
layer damping dominates the positive feedback of
IB wave emission; i.e., εcl/εrad >> 1.

6. Current Research

Although linear theory provides useful insight, there
are various nonlinear processes that merit future
investigation. For example, nonlinear stirring in the
critical layer decreases the magnitude of the radial
PV gradient at r∗. If the initial wave amplitude
is sufficiently large, this gradient might eventually
drop below the stability threshold. We are currently
developing numerical simulations, with nested grids,
to accurately and efficiently examine the nonlinear
damping and pumping of VR waves. Preliminary
results should be available by the time of this
conference.
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