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1.  INTRODUCTION 
 

A multivariate time series model was used to 
predict hurricane tracks in the North Atlantic basin.  Two 
types of data sets were developed to build the prediction 
scheme.  The first data set was used to identify analog 
hurricanes to the current storm and the second data set 
uses steering and synoptic observations along the storm 
track to predict the hurricane displacements.  An analog is 
a hurricane that has a similar meteorological behavior to 
the current tropical storm.  The data sets included 
climatology, persistence, and synoptic information during 
19 years (1984 – 2002) and the data sources were the 
Hurricane Best Track, NCEP Reanalysis, and Radiosonde 
data.  The Best Track and NCEP reanalysis data provide 
historical information while Radiosonde data include 
archived and current information. 
 
2.  METHODOLOGY 
 

The suggested methodology includes three major 
steps: 1) Identify the upper air information to generate the 
initial conditions, 2) Develop the upper air time series along 
the storm track, and 3) Predict the hurricane displacement. 
 
2.1 Initial Conditions   
 

It was assumed that during the first 24 hours of a 
tropical storm there were five consecutives observations, 
which were obtained every 6 hours.  The first observations 
were used to estimate the initial conditions for the 
development of a multivariate time series model.  
Climatology and persistence variables were used to identify 
analog hurricanes.  Similarities among tropical storms were 
identified in terms of the following variables: the Julian date, 
Eastward and Northward displacement, sea surface 
temperature, and ∗hurricane intensity and direction. 

A competitive artificial neural network (ANN) and 
a classification algorithm were used to identify the analog 
hurricanes to the current storm.  The analog was identified 
by implementing the following strategy.  The fisrt step 
consists of selecting 15 neurons with a competitive ANN 
and using the Kohonen learning rule. The competitive ANN 
assigns a code to each hurricane based on similarities 
identified in each variable at a single point in time.  The 
hurricanes that have the same code to the current storm 
indicate strong similarities and are named potential 
analogs. The potential analogs are selected from a file that 
contains 100 hurricanes.  The second step consists of 
processing the first five observations of the potential 
analogs by a second ANN and using 5 neurons.  The 
hurricanes that fall in the same category of the current 
storm define the analog hurricanes.  The third step involves 
filtering the analogs hurricanes by a classification algorithm 
whose criterion consists of minimizing the Euclidian 
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distance between the current storm and the analogs.  Thus, 
the storm that exhibited the minimum distance was called 
the analog hurricane to the current storm.   
 The locations of the first five points of the current 
storm were used to generate the expected initial 12 points; 
and all together made 17 points, which were used to extract 
the upper air data.  The NCEP data of the analog storm 
along the 17 initial points were used to estimate the upper 
air of the current storm.  Gridded upper air data (2.5x2.5 
degree on the horizontal) included the following variables: 
geopotential height, air temperature, relative humidity, and 
wind vector components.  These variables were extracted 
at the following levels: 1000, 850, 700, 500, 400, 300, 250, 
200, 150 and 100 mb.  These data were centered on the 
storm position with 10 degrees measured into the axial 
directions to East, West, South, and North.  Spatial 
interpolation algorithm was used to obtain estimation at one 
degree of resolution.  Thus, the extracted number of 
gridded points at each time interval was 441, i.e., the 
covered area at each time interval was a square of 21x21 
degrees. 

The information provided in the ten pressure levels 
was combined to generate a deep layer (Neumann, 1988).  
The values of each variable at each level were multiplied by 
some coefficients that provide more relevance to 
information located in the lower levels.  Thus, the deep 
layer at each time interval and the location of the storm 
during the first 17 points was defined as the initial 
conditions for the current tropical storm.  The initial 
conditions have enough information to develop a time 
series model and perform prediction at 6, 12, 18 and 24 
hours in advance. 
 
2.2 Develop the upper-air time series 
 

The upper air for the current tropical storm was 
estimated every six hours.  For instance, assuming that the 
location of the storm was known at a point 18, the upper air 
at point 18 was estimated based on selecting the 
appropriate analog.  It should be noted that an analog was 
identified every six hours.  The strategy for estimating the 
upper air at each point in time included three tasks: 1) Use 
the last observation to estimate the potential analogs, 2) 
Use a classification algorithm to identify the analog, and 3) 
Estimate the upper air for the current storm position. 
 1) A competitive ANN with 5 neurons was also 
used to identify the analog based only on the last 
observation of the current storm.  Six climatology and 
persistence variables (as mentioned in the previous 
section) were used to identify the analog.  2) Twelve 
synoptic variables were added to the persistent variables 
for each analog hurricane.  A classification algorithm based 
on minimizing the Euclidian distances between the current 
storm and the analogs was used.  The winner storm from 
this process was called the analog hurricane.  3)  NCEP 
data was used to obtain upper air centered on the location 
of the storm and a gridded deep layer was developed as 
explained in the previous section.  The described process 
was applied at every six hours, as soon as new information 
become available.  Dimensionality reduction was 



accomplished by using the first 10 principal components, 
which represents more than 90% of the total variance of the 
considered variables.  An algorithm was used to identify the 
optimal lags and the best three variables that best 
explained the hurricane displacement. 
 
2.3 Predicting hurricane displacement 
 

Univariate and bivariate time series models were 
identified depending on the length of the available 
information (Brockwell, and Davis, 2002).  Typically, the 
bivariate time series model requires more observation than 
the univarite model to build a time series model.  Thus, at 
the early stages of the storm only the univariate models 
were identified, one for modeling zonal and the other for 
meridional displacements.  The bivariate model expressed 
simultaneously the two displacements. 

The best three predictors and the Hook and Jeeves 
algorithm were used to identify the structure of the time 
series model and the hurricane displacement was predicted 
(Reklaities, 1983).  A different prediction model was built at 
every 6 hours and predictions were computed for 6, 12, 18 
and 24 hours in advanced.   

 
3.  RESULTS 
 
Arbitrarily three hurricanes were selected to implement the 
proposed algorithm.  Tables 1 and 2 show the prediction 
error for the three hurricanes at 12 and 24 hours, 
respectively.   
 

Table 1  Prediction Evaluation at 12 hours 

 
 

Table 1  Prediction Evaluation at 24 hours 

 
 

Figure 1.  Hurricane Danielle Predicted and Observed 
Displacement. 

 

Figure 1 shows the zonal and meridional displacements of 
the Hurricane Danielle at 12 and 24 hours lead time.  
Continuous line indicates the observed values and the dot 
line represents the predicted values.  Figure 2 shows the 
observed and predicted values of the track of Hurricane 
Danielle.   
  

Figure 2. Hurricane Danielle Predicted and Observed 
Displacement. 

 
 

4. CONCLUSIONES 
 

Although, the prediction error of the proposed 
model is larger than the official prediction error, the 
proposed model generated prediction errors smaller than 
other available models, especially for the lead time of 6, 12, 
18 and 24 hours.  More exploration is required to claim that 
the proposed method is better than the existing prediction 
schemes.  However, preliminary results show that the 
prediction scheme is a potential tool to increase the 
accuracy of predicting hurricane displacements. 

A current study pretends to use observations from 
aircraft reconnaissance data and from the Advance 
Microwave Sounding Unit (AMSU) sensor to improve the 
upper air temperatures every twelve hours and 
consequently to improve algorithm prediction accuracy. 
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