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1.   INTRODUCTION* 

 
 In order to develop physically sound 
parameterizations of orographic gravity wave drag for 
large-scale numerical models, it is useful to study the 
variation of this force, exerted by mountains on a 
stratified atmosphere, with the various parameters of the 
flow. Among these, shear is one of the most important. 
Although the drag has been calculated analytically for 
particularly simple non-uniform wind profiles (Smith 
1986, Grubišić and Smolarkiewicz 1997), and 
numerically for more complex wind profiles (Bacmeister 
and Pierrehumbert 1988, Valente 2000), a general 
framework to understand which characteristics of the 
wind variation with height affect the drag, and in what 
way, has been lacking.  
 This study uses the linearized, hydrostatic 
equations of motion to derive closed-form analytical 
expressions for the drag induced by an axisymmetric 
mountain and a 2D ridge, for generic wind profiles. This 
analytical approach enables one to understand more 
clearly the individual physical processes affecting the 
drag, through the functional dependence on the various 
parameters.  
 
2.  THEORETICAL MODEL 

 
 The proposed model is based on the Taylor-
Goldstein equation,  
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where ŵ is the Fourier transform of the vertical velocity 
perturbation, the primes denote differentiation with 
respect to z, N is the Brunt-Väisälä frequency of the 
background flow (assumed constant), (U(z),V(z)) is the 
background wind, (k1,k2) is the horizontal wavenumber 
vector of the internal gravity waves generated by the 
mountain and k12=(k1

2+k2
2)1/2. This equation is solved 

here using the WKB approximation, which formally 
assumes that the wind velocity varies over a scale that 
is much larger than the vertical wavelength of the 
waves. However, in practice, it is shown that the model 
is accurate even when this condition is not satisfied, or 
is only marginally satisfied. 
 In order for the wind variation with height to have 
any impact on the drag, it is necessary that the WKB 
solution be extended to second-order in the small 
perturbation parameter ε (Teixeira et al. 2004):  
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That is why previous analytical treatments using the 
first-order WKB solution (which is the most widely 
known) have failed to capture this effect (Grisogono 
1994, Shutts 1995). m0, m1, m2 are the zeroth-, first- and 
second-order coefficients of the series expansion of the 
vertical wavenumber of the gravity waves in powers of ε.  
 Equation (1) is subject to the boundary condition 
  η̂)()0(ˆ
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where (U0, V0) is the wind at the surface and η̂  is the 
Fourier transform of the terrain elevation. The radiation 
boundary condition at z→+∞ completes the specification 
of this problem.   
 Once the solution to (1) is determined, the Fourier 
transform of the pressure perturbation associated with 
the waves can be obtained by 
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where ρ0 is a reference density.  
 The gravity wave drag exerted by the atmosphere 
on the mountain (which has the same magnitude and 
the opposite sign of the drag exerted by the mountain 
on the atmosphere) is calculated using 
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for an isolated mountain. On the other hand, the drag 
per unit length for a 2D ridge aligned in the y direction is 
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where the asterisk denotes complex conjugate. 
Subject to the WKB assumption, the drag is found 

to depend on the first and second vertical derivatives of 
the wind velocity at the surface, being given by 
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for an axisymmetric mountain and by 
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  0=yD , (10)  

for a 2D ridge, where ( 0U ′ , 0V ′ ) and ( 0U ′′ , 0V ′′ ) are the first 

and second derivatives of the background wind at the 
surface. ( xD0 , yD0 ) denotes the gravity wave drag in the 

absence of any shear (i.e. for a constant wind). 
 
3.  RESULTS 
 
 As shown by (7)-(10), the drag normalized by its 
value in the absence of shear only depends on the 
characteristics of the flow at the surface, and is 
independent of the detailed shape of the orography, as 
long as this is axisymmetric or 2D. This is an important 
property, which is only valid for hydrostatic flow.  
 In order to test these drag expressions, 3 different 
flows are considered next, all of them with constant 
Richardson number (Ri). In all the cases addressed, (7)-
(10) simplify considerably, so that the correction to the 
drag due to the vertical wind variation is expressed in 
terms of Ri.  The resulting expressions are compared 
next with results from simulations of a mesoscale non-
hydrostatic numerical model (NH3D - see Miranda and 
James 1992), for approximately linear and hydrostatic 
conditions. 
 
3.1. Linearly decreasing wind – axisymmetric 

mountain 
 
 Consider a wind profile of the form 
  zUU α−= 0 , 

  0UV = , (11) 

where α and U0 are constants. In this case, (7)-(8) 
reduce to 
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where Ri=N2/α2. The two drag components therefore 
decrease as Ri becomes smaller, but the x component 
decreases faster.  
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Figure 1. Normalized drag as a function of Ri-1 for the 

flow (11). Lines: eq. (12), symbols: NH3D. 
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Figure 2. Normalized pressure perturbation at Ri=0.5 for 
the flow (11). Solid lines: positive values, dashed lines: 

negative values. (a) present model, (b) NH3D.  
 
The drag is also not aligned with the surface wind.  Fig. 
1 shows a comparison between the drag given by (12) 
and by the NH3D numerical model. The agreement is 
quite good, except for very small Ri, as would be 
expected in a WKB model. 
 Cross-sections of the pressure perturbation at the 
surface for a bell-shaped mountain are shown in fig. 2 (a 
is the width of the mountain and 

ĥ
 is its dimensionless 

height). Relative to the pressure perturbation in a flow 
with constant wind (Smith 1980), the pressure dipole is 
weaker, more asymmetric and with the maximum 
displaced towards the mountain peak (cf. Grubišić and 
Smolarkiewicz 1997). These features explain the lower 
drag in fig. 1, and are responsible for its misalignment 
with the surface wind. In fig. 2, the agreement of the 
present analytical model with the NH3D model is 
remarkable. 
 
3.2 Wind that turns with height – axisymmetric 

mountain 
 
 For a wind profile of the form 



  ( )zUU βcos0= , 

  )sin(0 zUV β= , (13) 

where β is a constant, (7)-(8) reduce to 
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where Ri=N2/(U0β)2. So, although the wind changes 
direction with height, the drag is predicted to have the 
direction of the surface wind (unlike the previous case). 
More importantly, the drag increases as Ri decreases.  
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Figure 3. Normalized drag along x as a function of Ri-1 
for the flow (13). Solid line: eq. (14), symbols: NH3D 

(from Valente 2000). 
 
This surprising result is in agreement with the numerical 
simulations of Valente (2000) (fig. 3), where the NH3D 
model was used. The reason for this behavior is 
explained by fig. 4, which displays the pressure 
perturbation at the surface. This perturbation is stronger 
than in the constant wind case (Smith 1980), and the 
maxima and minima are displaced to the right of the 
surface wind, yielding no y drag component. This 
structure is in worse agreement with the numerical 
simulations than the previous case, which suggest that 
the y drag component may not be zero.  
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Figure 4. Normalized pressure perturbation at Ri=0.5 for 

the flow (13). Contours as in fig. 2.  
(a) analytical model, (b) NH3D. 

 
Nevertheless the main features of the flow are 
reproduced with some accuracy. 
 
3.3.  Linearly decreasing wind – 2D ridge 
 
 The previous results have been for an axisymmetric 
mountain. Now consider a linear wind profile over a 2D 
ridge: 
  zUU α−= 0 . (15) 

The drag (9)-(10) reduces in that case to 

  






 −=
Ri

DD xx 8
1

10 , (16) 

where the definition of Ri is the same as in section 3.1. 
Equation (16) is asymptotically equal in the limit of large 
Ri to the corresponding result of Smith (1986) (his eq. 
(3.17)). The drag decreases as Ri decreases, as for an 
axisymmetric mountain, but the corresponding 
correction to D0x is larger than that in (12) by a factor of 
4/3, due to the absence of dispersion of the gravity 
waves.  
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Figure 5. Normalized drag as a function of Ri-1 for the 

flow (15). Solid line: eq. (16), dashed line: Smith (1986), 
symbols: NH3D. 



When the analytical prediction (16) is compared with 
results from the NH3D model, fairly good agreement is 
found (fig. 5). 
 The pressure perturbation at the surface, shown in 
fig. 6 for a bell-shaped ridge, also indicates that the flow 
structure is well reproduced by the analytical model, 
except for the lowest Ri, as would be expected. 
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Figure 6. Normalized pressure perturbation at various 
values of Ri for the flow (15). Lines: analytical model, 

symbols: NH3D. 
 
The pressure perturbation becomes progressively less 
anti-symmetric with respect to the ridge (whose peak is 
at x/a=0) as Ri decreases. 

  
4.  DISCUSSION 
 
 For the simple wind profiles considered in this 
study, it was found that the drag on an axisymmetric 
mountain or a 2D ridge varies proportionally to the 
inverse of the Richardson number of the flow. Whereas 
for a wind that varies linearly with height the drag 
decreases as Ri decreases, for a wind that turns with 
height maintaining its magnitude, the drag increases as 
Ri decreases. This explains previous numerical 
simulation results (Grubišić and Smolarkiewlcz 1997, 
Valente 2000). The present analytical model shows that 
the effect of a non-zero first derivative of the wind 
velocity at the surface is always to decrease the drag, 
while the effect of a negative second derivative (such as 
exists in a turning wind) is to increase the drag by a 
considerably larger amount. The model also predicts 
that the drag may not be aligned with the surface wind.  
 When results from the analytical model are 
compared with those obtained using a nonlinear, non-
hydrostatic numerical model (albeit for approximately 
linear and hydrostatic conditions), good quantitative 
agreement is found, even for Ri of order one.  
 The analytical drag expressions derived for flow 
over a 2D ridge, although much shorter than those 
derived for an axisymmetric mountain, display 
qualitatively the same type of dependence on the first 
and second derivatives of the wind velocity and on Ri. 
However, the coefficients multiplying the corrections to 
the drag due to the wind variation are larger by a factor 
of 4/3, due to geometrical effects (the wind is forced to 

flow over a ridge, while it can go over or around a 3D 
mountain, causing wave dispersion).  
 In both cases, these corrections are independent of 
the exact shape of the orography, provided that this is 
axisymmetric or slab-symmetric. This feature adds 
much relevance to the present calculations.  
 The idea of this study was to isolate the effects of 
wind profile shear and curvature from nonlinear and 
non-hydrostatic effects. However, these latter effects 
certainly modify the results presented here in important 
ways, which deserve to be explored. Another 
outstanding problem is how to objectively define the 
height at which to take the wind velocity and its 
derivatives for use in the analytical formulas presented 
here from real atmospheric data, since the present 
model is inviscid, but in practice the wind tends to zero 
at the surface. These problems provide motivation for 
future investigations. 
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