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ON ROTORS, INTERNAL WAVES AND HYDRAULIC JUMPS

IN SIMULATED STABLY-SRATIFIED FLOWS IN UTAH’S SALT LAKE
VALLEY

Ying Chen*, R. L. Street, F. L. Ludwig
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1. Introduction

The Advanced Regional Prediction System (ARPS)
was used to simulate weak synoptic wind condition
with stable stratification and pronounced drainage
flow at night in the vicinity of the Jordan Narrows
at the south end of the Salt Lake Valley. The sim-
ulations showed the flow to be quite complex with
hydraulic jumps and internal waves that make it es-
sential to use a complete treatment of the fluid dy-
namics. Agreement between simulations and obser-
vations from the October 2000 Vertical Transport
and Mixing eXperiment (VITMX) was qualitatively
good, and usually quantitatively good as well. More
flow features were resolved at finer spatial resolu-
tions. Five one-way nested grids were used to resolve
the complex topography and flow features. A coarse
ARPS model grid with horizontal spacing of 20 km
was initialized by ETA 40-km operational analyses.
Model outputs on that grid were input to finer grids
with horizontal resolution of 5 km, 1 km, 250 m and
100 m via one-way nesting. The 250-m and 100-
m grids have 200 vertically stretched levels up to a
height of 20 km. The vertical spacing is 10 m at
the surface, and 190 m at the uppermost level. Fig-
ure 1 shows the relationship of the 1-km, 250-m and
100-m Grids.

2. Simulated rotors, internal waves and
hydraulic jumps

Figure 2 is a perspective view of the area covered by
the 100-m grid. The terrain complexity is substan-
tial, but exaggerated by a 10:1 ratio between ver-
tical and horizontal scales. Simulation results are
displayed in Figure 3 to Figure 8 for the three cross
sections shown in Figure 2. Flows in the north-south
corss sections at the Traverse Range show how strat-
ified nighttime flow interacts with the mountain bar-
rier.

The simulated results from 100-m grid show that
the flow over the Traverse Mountain barrier can in-
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duce wave motions in the lee, along with low-level
rotor flow that is associated with internal waves and
hydraulic jumps. Figures 3, 5 and 7 show the evolu-
tion of ARPS winds and temperatures in the cross
sections A, B and C (see Figure 2). Figures 4, 6 and
8 are the enlarged views of the wind field for Figures
3, 5 and 7 respectively, where some interesing flow
features can be seen more clearly.

There is a well established, early evening (0200
UTC or 1900 LST) northerly flow in Figures 3a, 5a
and 7a. It comes up the Salt Lake Valley, over the
Traverse Moutains and into the Utah Lake basin.
The subsidence over the south slope of the Traverse
Mountains is quite strong in the lowest kilometer,
and a stable shallow layer is produced on the lee
slope (Figures 3a, 5a and 7a). Flow decelerates
upon encountering flatter terrain, and an hydraulic
jump is produced (Figures 4 and 8). As the night
progresses and the surface cools, the flow reverse.
Winds reversed by 0600 UTC (2300 LST, Figures
3b, 5b and 7b). The winds near the surface were
weak at this time, and became stronger at 1000 UTC
(0300 LST, Figures 3c, 5¢c and 7¢). Flow separation
occurs at the foot of the mountain and rotors are
formed (Figure 6).

3. Conclusion

Our results indicate that using ARPS model and
nested grid methods has allowed us to produce hy-
draulic jumps, internal waves and rotors over a com-
plex orography. Those flows can have a large effect
on mixing and vertical transport. The simulations
may not precisely reproduce the real flows, but they
can aid in the design of the future field experiments.
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Fig.1. The three computational grids.

Fig.2. Perspective view of the terrain encompassed
by the 100-m grid.
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Fig.3. Evolution of ARPS winds and temperatures in the cross section A (see Figure 2).
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Fig.4. The enlarged view of a part of Figure 3a.
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Fig.5. Evolution of ARPS winds and temperatures in the cross section B (see Figure 2)
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Fig.6. The enlarged view of a part of Figure 5c.
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Fig.7. Evolution of ARPS winds and temperatures in the cross section C (see Figure 2)
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Fig.8. The enlarged view of a part of Figure 7a.



