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1. INTRODUCTION 
The diurnal cycle of summer convection over mountains 

is thought to generate disturbances that can modulate 
convection nearby (Banta and Schaaf, 1987), and possible 
at a great distance. An example is the propagation of 
convection from the Rockies eastward, even reaching the 
Atlantic coast (Carbone et al.2003). A basic question is 
whether diurnal gravity waves play a role in such events? 
If they do, how are they modified by rotation, mean wind 
and shear? Rotation allows convective heating to generate 
Potential Vorticity (PV). Daily pulses of PV will drift 
downwind of the source region, but can they generate 
vertical motion to trigger convection? Here, we review 
idealized models based on the classical 3-D linearized 
Boussinesq equations to see if they can provide new and 
useful insights.  

 
2. MODELS 
  Classical 3-D linearized Boussinesq equations are 

used to demonstrate the effect of periodic heating and 
rotation. The transient linear response of the 
atmosphere to prescribed heat sources and sinks has 
been investigated by Lin and Smith (1986). They 
discussed the two dimensional, inviscid, nonrotating and 
hydrostatic flow under different heat forcing. Here, 
based on these, we add damping, rotation and 
nonhydrostatic effects under periodic heating force. 
 The governing equations are: 
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For periodic heating: 
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We assume the scaled heating rate: 
tiezyxBtzyxB σ
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σ is the heating frequency. Here, we are not only 
interested in diurnal but also semi-diurnal heating, since 
they can be composed to approximate arbitrary 
oscillating heating. 
Use the Gauss function as horizontal heating function: 
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3   SINGLE LAYER MODEL RESULTS 

1-layer linear model is able to illustrate the condition 
for the generation of inertio-gravity waves (IGW). Here, 
we’ll emphasize on the relation between  σ , U , and f . 

We use two dimensional Fourier transform in x,y and 
simplify original equations to  
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 for hydrostatic flow. And intrinsic 

frequency ασσ iVlUk −++=
−

 , which is also the dispersion 
relation. It reflects the Doppler shift of the heating 
frequency by the mean wind.  

The characteristic vertical wavenumber γ determines 

the solution character of )(zw
∧

. If 02 >γ , the vertical 
motion will be periodic in z direction. If 02 <γ , the 
perturbation will damp with z, no wave will be 
generated. So the condition for the generation of IGW is 
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The solution of PV in Fourier Space is  
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So, if 0=f or 0=
∧

B or 0)(' =zf , 0=
∧

PV , which means 
that PV couldn’t exist without Coriolis force, or outside 
heating region, or constant heating magnitude in z 
direction.  

Here, we demonstrate three numerical FFT (Fast 
Fourier Transform) results: 

The parameters that the 1-layer linear models used 
are: inner domain 400 grid cell×10km; outer domain 
16384 grid cell×10km; mean wind U ; Rayleigh Decay 
constant α ; Coriolis parameter f ; depth of heating 
H=2000m, H/1=β ; horizontal Gauss shape of heating, 
the radius of the source a  grid cell×10km; the heating 
strength 6105.2 −× . 
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             Fig 1.1                                     Fig 1.2 

Case 1A simulates a diurnal oscillating, non-
advective, nonrotating flow. Fig 1.1 shows w field of 
case 1A. Fig 1.2 shows PV field of case 1A. The 
horizontal axis is x (10km per grid). The vertical axis is z 
(100m per grid). Since the oscillating heating effect is 
dominant )( f>σ , it generates gravity waves. These 
gravity waves propagate to both sides, and are reflected 
from the rigid lower boundary. No PV is generated 
because of no Coriolis force.   

 
             Fig 2.1                                     Fig 2.2 

Case 1B simulates a diurnal oscillating, non-
advective, rotating flow. Fig 2.1 shows w field. Fig 2.2 
shows PV field. Since the Coriolis force effect is 
dominant )( f<σ , the disturbance will decay with height. 
Waves are cut off, only local disturbances exist. PV is 
generated but only in the heating area.  

 
             Fig 3.1                                     Fig 3.2 

Case 1C simulates a diurnal oscillating, strongly 
advective, rotating flow. Fig 3.1 shows w field. Fig 3.2 
shows PV field. Since the effects of oscillation and 
rotation are comparable, the advection becomes 
important. In the upwind side, inertio-gravity waves are 
generated; in the downwind side, they are cut off. PV 
are generated at the heating source and advected 
downwind. No vertical motion is associated with the 
advected PV pulse. 
 
4. 2-LAYER MODEL RESULTS 
4.1 Parameters in the model 

2-layer linear model is based on the 1-layer model, 
but vertical shears of  

21 /UU and 21 / NN  are added. This 
model is capable of illustrating the vertical wind shear, 
stability changing with height in troposphere.  

 
 
4.2 General analytic solutions  

In order to demonstrate the effect of the vertical 
shear, first, we solve 2-layer Linearized Boussinesq 
equations in Fourier space: 
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4.3 Asymptotic integral evaluation to get the far field 
solution  

To simplify the discussion, we set 0=l here. 
In real space, 
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∧
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If the solution of 
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nw  exist, the eigenvalue nγ  should be 

finite, which means 02
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fnσ . Also, the definition of  

nγ  make sure nγ is finite and 0≠nγ , otherwise 

022 =+ lk , which is impossible. The imaginary part 
of 0≥nγ  make sure 0)( <− βγ ni . So the possible poles 
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Which is resonance condition. But the choose of 
physical parameters here ( a ,

21 /UU ,
21 / NN ,σ , f ) is 

impossible to satisfy this resonance condition.  So, there 
will not exist singularity for ),(2 zkw

∧
 and ),(3 zkw

∧
, since 

02 ≠γ , 0)( 2 ≠− βγi . But it is possible for 0=
−

nσ . 
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When 02 =
−
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a singularity to ),(1 zkw
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 are all rational function of k, and the 

degree of numerator and denominator are the same, 
which means that when k goes to infinity, they goes to 

some specific values. So, 
∧∧
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Riemann-Lebesgue Lemma, 0),(3 →∫
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This integral can be easily evaluated by using contour 
integration.  

 

 

[ ] x
U

tUx
U

i

ti

eezkSinkf

eksitzxw

2

2
2

2
)(

*
1

*

*
1

)()(4

)(Re2),,(
ασ

σ

γπ

π
−−−

−=

=  

Also 

 
x

U
tUx

U
i

ti

eezf
N

f

eksitzxPV

2

2
2

2
)(

'
2

2

*
3

)(2

)(Re2),,(
ασ

σ

π

π
−−−

⋅=

=
 

Which means that ),,(1 tzxw and ),,(3 tzxPV  propagate 
downwind with the same speed 

2U . And the term 
[ ]zkSin )( *

1γ  determines the vertical structure of 
1w . If 

)( *
1 kγ  is real, ),,(1 tzxw  is periodic in z direction, which 

corresponds to gravity waves in the lower layer ( 02
1 >γ ). 

If )( *
1 kγ  is imaginary, ),,(1 tzxw  decays with height 

( 02
1 <γ ), which corresponds to quasi-geostrophic (QG) 

motion. 
By the way, the singularity of ),(1 zkw

∧  caused only 

when
−−

≠ 21 σσ . If  
−−

= 21 σσ  , no matter 02 =
−

σ , the 

nominator −

1σ cancels with the denominator −

2σ , no 
singularity causes. This means that if no shears exist, 

0),,(1 →tzxw  when ∞→x , no matter PV drifting with 
mean wind or not. This result is consistent with the 
general conclusion that vertical motion is invariant under 
a Galilean transformation of the zonal coordinate. 
 
4.4 Numerical FFT results for 2-layer linear model 

Here, we demonstrate two numerical FFT results for 
the 2-layer model: 
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                               Fig 4.1 
 

 
                Fig 4.2                                 Fig 4.3 

 
                Fig 4.4                                 Fig 4.5 
  Case 2A simulates the case with diurnal heating and 

strong vertical shears. Fig 4.1 is the frequency diagram, 
it shows that gravity waves generate in the upwind side 
both in the upper layer and in the lower layer; but in the 
downwind side, the intrinsic frequency of the lower layer 
falls into the quasi-geostrophic (QG) region, so only QG 
perturbation is generated there. Fig 4.2 is the w field. 
Fig 4.3 is the PV field. The horizontal axis is x (10km per 
grid). The vertical axis is z (100m per grid). Although 
near the heating source, there exist local forced 
circulation. But far away from the source, only the QG 
perturbation triggered by the drifting PV is dominant.  
Fig 4.4 is the time-distance plot of the w when z=1800m. 
Fig 4.5 is the time-distance plot of the PV when 
z=5200m. The horizontal axis is x (10km per grid). The 
vertical axis is t (432 second per grid). It can be seen 
that the propagating QG perturbation in the lower layer 
and drifting PV in the upper layer have the same speed, 
which is equal to that of the upper layer mean wind.   



                            

 
                                       Fig 5.1                                      

        
             Fig 5.2                                   Fig 5.3 

 
             Fig 5.4                                   Fig 5.5 

 
             Fig 5.6                                   Fig 5.7 
 

Case 2B shows the case with semi-diurnal heating 
and strong vertical shears. Fig 5.1 is the frequency 
diagram, it shows that gravity waves (GW) generate in 
the upwind side both in the upper layer and in the lower 
layer. And in the downwind side, the intrinsic frequency 
of the lower layer also falls into the GW region, so GW 
perturbation is generated there. Fig 5.2 is the w field 
near the heating source. Fig 5.3 is the PV field near the 
heating source. Fig 5.4 is the time-distance plot of the w 
(near the heating source) when z=1800m. Fig 5.5 is the 
time-distance plot of the PV (near the heating source) 
when z=5200m. Fig 5.6 is the w field far away from the 
heating source. Fig 5.7 is the time-distance plot of the w 
(far away from the heating source) when z=1800m. 
Near the heating source, there exist gravity waves both 
in the upwind side and in the downwind side of the 
upper layer, and in the upwind side of the lower layer, 
but they decay very fast. So far away from the source, 
only the GW perturbation triggered by the drifting PV 
can exist. Here, the local GW near the heating source is 
different from the GW perturbation triggered by the 
drifting PV since the former one has different 
wavelength as that of the PV and their propagation 

speeds are independent (Fig 5.2, 5.4, 5.7), but the latter 
one has the same wavelength as that of the PV and 
they propagate with the same speed (Fig 5.5, 5.7). 
 
5. SUMMARY AND CONCLUSION: 

In this paper, general analytical solutions of linearized 
Boussinesq equations are solved for 1-layer and 2-layer 
models. 1-layer model results show that the relative 
magnitude of the intrinsic frequency and Coriolis 
frequency is important. If f>σ , inertia gravity waves will 
be generated; if the Coriolis effect is dominant ( f<σ ), 
waves will be prevented. In mid-latitudes, the diurnal 
frequency is less than the Coriolis parameter, so gravity 
wave propagation is prevented. A mean wind Doppler 
shifts the frequency in principle, but in practice, little 
gravity wave energy is found either upwind or downwind of 
the source.  

The definition of potential vorticity shows that the 
generation of PV depends on the existence of the Coriolis 
force, and a heating source that varies in altitude. Without 
the Coriolis force, no potential vorticity will be generated.  

While the combined role of PV and background 
shear are already well known in the Q-G limit (e.g. the 
omega-equation and Q-vectors) we take a linearized 
gravity wave approach. Within a linear framework, we 
examine the analytical solution by asymptotic integral 
evaluation and the numerical FFT results of the linear 
model. It seems that vertical mean wind shear plays a 
critical role: a PV pulse drifting in a constant wind, just 
like a stationary one, will produce no vertical motion 
according to the principle of Galilean Invariance. In 
contrast, in a sheared mean wind, the vertical motions 
will accompany the PV pulse. 

In future, we’ll see if PV induced vertical motion is 
strong enough to trigger deep convection through 
satellite observation and numerical modeling.      
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