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1. INTRODUCTION
The diurnal cycle of summer convection over mountains
is thought to generate disturbances that can modulate

convection nearby (Banta and Schaaf, 1987), and possible

at a great distance. An example is the propagation of
convection from the Rockies eastward, even reaching the
Atlantic coast (Carbone et al.2003). A basic question is
whether diurnal gravity waves play a role in such events?
If they do, how are they modified by rotation, mean wind

and shear? Rotation allows convective heating to generate

Potential Vorticity (PV). Daily pulses of PV will drift
downwind of the source region, but can they generate
vertical motion to trigger convection? Here, we review
idealized models based on the classical 3-D linearized
Boussinesq equations to see if they can provide new and
useful insights.

2. MODELS

Classical 3-D linearized Boussinesq equations are
used to demonstrate the effect of periodic heating and
rotation. The transient linear response of the
atmosphere to prescribed heat sources and sinks has
been investigated by Lin and Smith (1986). They
discussed the two dimensional, inviscid, nonrotating and
hydrostatic flow under different heat forcing. Here,
based on these, we add damping, rotation and
nonhydrostatic effects under periodic heating force.

The governing equations are:

D

Db N?w=B-ab
Dt

vV=0

Here, p'=(p-p(2))/ p

Buoyancy: b=g(T -T,+9z/C,)/T,

For periodic heating: g = g ¢y 2:C,T

We assume the scaled heating rate:

B(x,y,2,t) =B, (x,y,2)e'"

o is the heating frequency. Here, we are not only
interested in diurnal but also semi-diurnal heating, since
they can be composed to approximate arbitrary

oscillating heating.
Use the Gauss function as horizontal heating function:

B,(xY,2)= Ae @ (7)

3 SINGLE LAYER MODEL RESULTS

1-layer linear model is able to illustrate the condition
for the generation of inertio-gravity waves (IGW). Here,
we’ll emphasize on the relation between o, U, and f.

We use two dimensional Fourier transform in x,y and
simplify original equations to
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frequency o=c+Uk+VI-ia , which is also the dispersion
relation. It reflects the Doppler shift of the heating
frequency by the mean wind.

The characteristic vertical wavenumber ¥ determines

the solution character of\;v(z) If % >0, the vertical

motion will be periodic in z direction. Ify2 <0, the

perturbation will damp with z, no wave will be
generated. So the condition for the generation of IGW is
2

o —2>0.
The solution of PV in Fourier Space is
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So, if f=0o0r |§=oor f'(z)=0, PAV =0, which means
that PV couldn’t exist without Coriolis force, or outside
heating region, or constant heating magnitude in z
direction.

Here, we demonstrate three numerical FFT (Fast
Fourier Transform) results:

The parameters that the 1-layer linear models used
are: inner domain 400 grid cell X 10km; outer domain
16384 grid cell X 10km; mean wind U ; Rayleigh Decay

constant ¢ ; Coriolis parameter f; depth of heating
H=2000m, B =1/H ; horizontal Gauss shape of heating,

the radius of the source a grid cell X 10km; the heating
strength 2.5x10°°.
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Case 1A simulates a diurnal oscillating, non-
advective, nonrotating flow. Fig 1.1 shows w field of
case 1A. Fig 1.2 shows PV field of case 1A. The
horizontal axis is x (10km per grid). The vertical axis is z
(2100m per grid). Since the oscillating heating effect is

dominant (s > f), it generates gravity waves. These

gravity waves propagate to both sides, and are reflected
from the rigid lower boundary. No PV is generated
because of no Coriolis force.
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Fig 2.1 Fig 2.2
Case 1B simulates a diurnal oscillating, non-
advective, rotating flow. Fig 2.1 shows w field. Fig 2.2
shows PV field. Since the Coriolis force effect is
dominant (& < f), the disturbance will decay with height.

Waves are cut off, only local disturbances exist. PV is
generated but only in the heating area.
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Fig 3.1 Fig 3.2

Case 1C simulates a diurnal oscillating, strongly
advective, rotating flow. Fig 3.1 shows w field. Fig 3.2
shows PV field. Since the effects of oscillation and
rotation are comparable, the advection becomes
important. In the upwind side, inertio-gravity waves are
generated; in the downwind side, they are cut off. PV
are generated at the heating source and advected
downwind. No vertical motion is associated with the
advected PV pulse.
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4. 2-LAYER MODEL RESULTS
4.1 Parameters in the model

2-layer linear model is based on the 1-layer model,
but vertical shears of y, ju,and N, /N, are added. This

model is capable of illustrating the vertical wind shear,
stability changing with height in troposphere.
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4.2 General analytic solutions
In order to demonstrate the effect of the vertical
shear, first, we solve 2-layer Linearized Boussinesq

equations in Fourier space:
1.0<z<z
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4.3 Asymptotic integral evaluation to get the far field
solution
To simplify the discussion, we set | = Ohere.
In real space,
W, (x,2,t) = e [, (k, 2)edk + PV, (x,2,t) = ¢ [ PV, (k, 2)e ™ dk

If the solution of W, exist, the eigenvalue }, should be

_ 2
finite, which meansg - f2x£0. Also, the definition of

¥, make surey  is finite and y # 0, otherwise
k? +12 =0, which is impossible. The imaginary part
ofy >0 make sure(iy, — ) < 0. So the possible poles

for the integral are , - and
2
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Which is resonance condition. But the choose of
physical parameters here (a,u,/U,sN,/N,: O » f)is
impossible to satisfy this resonance condition. So, there

will not exist singularity for VQZ (k,z) and \ﬁg(k, z), since

7, #0, (iy, — B) # 0. Butitis possible for 5 =0.
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it will become

a singularity to vcl(k,z) and P§/3(k,z) .
Since Va1 K2 are all rational function of k, and the
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degree of numerator and denominator are the same,

which means that when k goes to infinity, they goes to

some specific values. So, w, (k,z) = f (k°)e*? B , and
kZ

‘f(kO)eik”z ~mWhen K — 0. But B-Be «,when

k—>w, B—>0.50 J-Vga(k‘z)dkw.According to

Riemann-Lebesgue Lemma, .[V\A/3(k, 2)e™dk — 0 when
X — 0. V\72(k, z) is also the same.
But VQl(k’ z) has singularity for | -~ _ _ o . And
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This integral can be easily evaluated by using contour
integration.
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Which means that w, (x, z,t) and py,(x,z,t) pPropagate
downwind with the same speed y,. And the term
sinfy, (k")z| determines the vertical structure of w, . If
7 (k") is real, W, (X, 2,t) is periodic in z direction, which
corresponds to gravity waves in the lower layer (> >0).
If » (k") is imaginary, w,(x,z,t) decays with height
(7/12 <0), which corresponds to quasi-geostrophic (QG)
motion.
By the way, the singularity of \,Ql(kyz) caused only

wheng, ¢, . If o, =o, ,nOmatter &, =0, the
nominator . cancels with the denominator ;, , no
singularity causes. This means that if no shears exist,
w, (x,z,t) — 0 when X — oo, no matter PV drifting with
mean wind or not. This result is consistent with the

general conclusion that vertical motion is invariant under
a Galilean transformation of the zonal coordinate.

4.4 Numerical FFT results for 2-layer linear model
Here, we demonstrate two numerical FFT results for
the 2-layer model:

Case o f u,/U, Motion
Sil S’l m/s
2A -4 1/10 Upwind II: IGW
o
o | 10 I: QG
Downwind 1l: PV, IGW
1:QG
2B 20, | 107 1/10 Upwind II: IGW
. IGW
Downwind | Il: PV, IGW
1. IGW
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(Upper) (Lower) (Leower ) (UP:DGF‘)
i Y
0,7, 7 o0 o 7,
Fig 4.1
b " \ ' b -l e w s
Fig 4.2 Fig 4.3

= ' - s 'r;. 1 ‘. "-- e :

Fig 4.4 Fig 4.5

Case 2A simulates the case with diurnal heating and
strong vertical shears. Fig 4.1 is the frequency diagram,
it shows that gravity waves generate in the upwind side
both in the upper layer and in the lower layer; but in the
downwind side, the intrinsic frequency of the lower layer
falls into the quasi-geostrophic (QG) region, so only QG
perturbation is generated there. Fig 4.2 is the w field.
Fig 4.3 is the PV field. The horizontal axis is x (10km per
grid). The vertical axis is z (100m per grid). Although
near the heating source, there exist local forced
circulation. But far away from the source, only the QG
perturbation triggered by the drifting PV is dominant.
Fig 4.4 is the time-distance plot of the w when z=1800m.
Fig 4.5 is the time-distance plot of the PV when
z=5200m. The horizontal axis is x (10km per grid). The
vertical axis is t (432 second per grid). It can be seen
that the propagating QG perturbation in the lower layer
and drifting PV in the upper layer have the same speed,
which is equal to that of the upper layer mean wind.
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Case 2B shows the case with semi-diurnal heating
and strong vertical shears. Fig 5.1 is the frequency
diagram, it shows that gravity waves (GW) generate in
the upwind side both in the upper layer and in the lower
layer. And in the downwind side, the intrinsic frequency
of the lower layer also falls into the GW region, so GW
perturbation is generated there. Fig 5.2 is the w field
near the heating source. Fig 5.3 is the PV field near the
heating source. Fig 5.4 is the time-distance plot of the w
(near the heating source) when z=1800m. Fig 5.5 is the
time-distance plot of the PV (near the heating source)
when z=5200m. Fig 5.6 is the w field far away from the
heating source. Fig 5.7 is the time-distance plot of the w
(far away from the heating source) when z=1800m.
Near the heating source, there exist gravity waves both
in the upwind side and in the downwind side of the
upper layer, and in the upwind side of the lower layer,
but they decay very fast. So far away from the source,
only the GW perturbation triggered by the drifting PV
can exist. Here, the local GW near the heating source is
different from the GW perturbation triggered by the
drifting PV since the former one has different
wavelength as that of the PV and their propagation

speeds are independent (Fig 5.2, 5.4, 5.7), but the latter
one has the same wavelength as that of the PV and
they propagate with the same speed (Fig 5.5, 5.7).

5. SUMMARY AND CONCLUSION:

In this paper, general analytical solutions of linearized
Boussinesq equations are solved for 1-layer and 2-layer
models. 1-layer model results show that the relative
magnitude of the intrinsic frequency and Coriolis
frequency is important. If o > f , inertia gravity waves will

be generated; if the Coriolis effect is dominant (o < f ),

waves will be prevented. In mid-latitudes, the diurnal
frequency is less than the Coriolis parameter, so gravity
wave propagation is prevented. A mean wind Doppler
shifts the frequency in principle, but in practice, little
gravity wave energy is found either upwind or downwind of
the source.

The definition of potential vorticity shows that the
generation of PV depends on the existence of the Coriolis
force, and a heating source that varies in altitude. Without
the Coriolis force, no potential vorticity will be generated.

While the combined role of PV and background
shear are already well known in the Q-G limit (e.g. the
omega-equation and Q-vectors) we take a linearized
gravity wave approach. Within a linear framework, we
examine the analytical solution by asymptotic integral
evaluation and the numerical FFT results of the linear
model. It seems that vertical mean wind shear plays a
critical role: a PV pulse drifting in a constant wind, just
like a stationary one, will produce no vertical motion
according to the principle of Galilean Invariance. In
contrast, in a sheared mean wind, the vertical motions
will accompany the PV pulse.

In future, we’ll see if PV induced vertical motion is
strong enough to trigger deep convection through
satellite observation and numerical modeling.
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