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SYNOPTIC RESPONSES TO BREAKING

MOUNTAIN GRAVITY WAVES MOMENTUM DEPOSIT

AT TURNING CRITICAL LEVELS

Armel MARTIN1 and François LOTT
Ecole Normale Superieure, Paris, France

1 Abstract

The synoptic scale responses of a stratified rotat-
ing shear flow to small scale mountain gravity waves
(GWs) encountering turning critical levels is analysed.
To quantify the significance of the momentum deposit
by the moutain GWs onto the large-scale flow, these
responses are compared to those produced by large
scale mountains.

For this purpose, we use a semi analytical model
based on a linear Boussinesq semi-geostrophic f-plane
version of the Eady model of baroclinic instability, and
force it by two independent processes. Both processes
result from a large scale complex mountain that con-
sists of a finite size ensemble of small scale ridges
embedded within a large scale enveloppe, the horizon-
tal scale of the enveloppe being significantly different
from that of the individual ridges. Under this hypoth-
esis, a first mountain forcing is due to the mountain
GWs which are generated by the small-scale ridges.
They interact with the large scale flow at turning
critical levels, where they produce a dipolar poten-
tial vorticity (PV) anomaly advected and steered by
the shear in the mid-troposphere. The second forcing
is due to the large scale enveloppe, which produces a
vertical velocity at the ground but no inflow PV.

First, we study the model response in the absence
of any upper boundary. We show that, under a ge-
ometrical configuration such that the majority of the
mountain GWs encounter critical levels, the potential
vorticity they produce can force steady boundary Eady
waves as much substantial as those produced by the
corresponding large scale mean orography. Further-
more, we find that the GW can reinforce (i) the anti-
cyclonic circulation and (ii) the downslope low which
are produced by the mean orography. We also distin-
guish between the warm front configurations and the
cold front configurations.

In the presence of a rigid lid, baroclinic instabil-
ities can develop but the above results remain valid
at least within the first 36 hours. In the long term,

the PV advected in the far field can sustain very effi-
ciently the developpment of baroclinic unstable Eady
modes.

These calculations are essentially analytical, and
illustrate in a well known model the significance of
breaking mountain GW and turning critical levels for
the synoptic circulation. They may help to appreci-
ate the needs for the parametrization of turning crit-
ical levels in GCMs, and in particular the need to
parametrize mountain gravity waves in the spectral
space. They also give some hints of the benefits to
be expected from such parametrizations.
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Figure 1: Diagram of the problem in the cold front
situation. The vector kw defines the transverse scale
of the ridges and their orientation.

We study the synoptic response of a rotating strati-
fied shear flow to the presence of an isolated mountain
constituted of several near 2D narrow ridges embed-
ded within a large scale enveloppe of shape H(x). For
this, we take for the mountain elevation (see Fig. 1)

h(x) = H0 e
−

x2+y2

2L2 (1+cos(kwx)) = H(x)(1+cos(kwx))
(1)

where kw = kwex+lwey, and kw > 0 by convention.
The background wind varies linearly with altitude :

Ub(z) = Ub(z) ex + V0 ey = (U0 + Λz) ex + V0 ey, (2)
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where U0 and V0 are the two components of the in-
cident wind at the ground, and Λ is the vertical wind
shear. The background potential temperature is as-
sumed to be given by

Θb(y, z, t) = θr + θ0(z) + Θ(y) + θad(t), (3)

where θr is a constant reference temperature, θ0(z)
is the stratification when the fluid is at rest,

Θ(y) = −
Λfθr

g
y (4)

equilibrates the shear via the thermal wind balance,
and

θad(t) = −V0Θy t (5)

accounts for the global change of potential tempera-
ture associated to the front Θy advancing at the ve-
locity V0. The indices y and z denote derivatives rel-
ative to the corresponding coordinate. The gradients
of θ0(z) and Θ(y) are both constant, which implies
that the Brunt Väisälä frequency and the background
wind shear,

N2 =
gθ0z

θr

and Λ = −
gΘy

fθr

, (6)

are constant too.
Next, we assume that the response to the large

scale enveloppe H is well described by balanced equa-
tions, while the response to the small scale orography
H(x) cos(kw x) is well described by GWs not sensi-
tive to the Coriolis force. These hypotheses at least
require that the characteristic scale of the enveloppe
is large compared to that of the GWs (‖kw‖L � 1),
and that the Rossby number associated with the GWs
is large (V0

f
‖kw‖ � 1). Nevertheless, if the back-

ground flow turns with altitude, the GWs can en-
counter critical levels (Shutts, 1998), and affect the
large scale flow as they deposit momentum and pro-
duces PV anomalies (Schär and Smith, 1993). The
large scale flow response to this process will also be
analysed with the balanced equations used to describe
the response to H. Therefore, in the rest of the pa-
per, we will assume that the large scale flow only sees
the GWs through a large scale force

F(x, z) = F (x, z) ex + G(x, z) ey, (7)

and assume that the horizontal scale of this force is
comparable to that of H, and that this scale corre-
sponds to a Rossby number near 1 or smaller. Under
this last hypothesis, and for small amplitude forcings,
the response to F and H can be evaluated anality-
cally using a linear version of the semi-geostrophic
Boussinesq set of equations given in Hoskins (1975).
Indeed, Lott (2003) has shown that semi-geostrophic
equations describe very well the large scale response
to breaking GWs in complete numerical simulations.

This set of equations satisfies a budget for the
potential vorticity (PV) given by :

(∂t + Ub∇) q + ∇JN = 0, (8)

where the non advective PV flux and the PV are re-
spectively

JN = − θ0z (1 − Ri
−1)G ex + θ0z F ey − Θy F ez (9)

and

q(x, z, t) = θ0z

(
(1 − Ri

−1)∂xvg − ∂yug

)
+Θy∂zug+f∂zθ.

(10)

In Eqs. (9) and (10), Ri = N2

Λ2 is the background
flow Richardson number. This linear problem can be
solved in the Fourier space in the horizontal directions.
In this space, the PV can be evaluated analytically and
the potential satisfies :

∂2φ̂

∂z2
− 2iλi

∂φ̂

∂z
−

(
λ2

r + λ2
i

)
φ̂ =

g

fθr

q̂, (11)

where λr =
N

f

√
1 − 1

Ri
‖k‖ and λi = l

Λ

f
. (12)

Therefore, the general form of the potential is :

φ̂ = φ̂p(k, z, t) + φ̂u(k, t) e−λz + φ̂d(k, t) e+λ∗(z−D),

(13)
where the particular solution

φ̂p(k, z, t) = e
−λz

∫ z

0

e
2λrz′

∫ D

z′

− g

fθr

q̂ e
−λ∗z”

dz”dz
′

(14)

(λ = λr − iλi) contains all the PV, but vanishes
in z = 0 and z = D (∗ denotes the complex con-
juguate). The two other terms are the eigenmodes
of Eq. (11) with a null right hand, which contain no
PV, but which satisfy the two boundary conditions
(boundary Eady waves).

We split each boundary Eady mode and each
boundary condition in two parts :

φ̂u,d(k, t) = φ̂u,dW
(k, t) + φ̂u,dE

(k, t), (15)

where the indices W and E respectively refer to the
part excited by the GWs, and the part excited by
the large scale enveloppe. The temporal evolution
is obtained by the four boundary conditions. At the
ground :

λr(∂t − ikU0)
(

φ̂uW
− φ̂dW

e
−λ∗D

)

−ikΛ
(
φ̂uW

+ φ̂dW
e
−λ∗D

)
= BG(k, t) , with (16)

BG(k, t) = (∂t − ikU0)∂zφ̂p(0) + ΛF̂ (0) , and (17)

∂zφ̂p(0) = −
∫ D

0

g

fθr

q̂ e
−λ∗z

dz = ∂zφ̂p(k, z = 0, t) ,

(18)
and second

λr(∂t − ikU0)
(
φ̂uE

− φ̂dE
e−λ∗D

)
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−ikΛ
(
φ̂uE

+ φ̂dE
e−λ∗D

)
= −ikU0 N2

(
1 −

1

Ri

)
Ĥ(k),

(19)

where F̂ (0) = F̂ (k, z = 0). At the tropopause we
impose to the vertical velocity to vanish (the equa-
tions are not shown but very near Eqs. (16)-(19)).
We always take a null initial state, and the balanced
response is always described at the ground, where φ̂p

vanishes, therefore we are only interested in compar-
ing the two Eady modes :

φ̂W (k, t) = φ̂uW
(k, t) + φ̂dW

(k, t) e−λ∗D and

φ̂E(k, t) = φ̂uE
(k, t) + φ̂dE

(k, t) e−λ∗D. (20)

To evaluate the force F(x, z), we make another hy-
pothesis and assume that its horizontal repartition
takes the form :

F(x, z) = F(z) e
−

x2+y2

L2 , where F = −
d

dz
uw, and

(21)

uw =
1

πL2

∫ +∞

−∞

∫ +∞

−∞

uw dx dy (22)

Under this hypothesis, we can calculate analytically
F. As the most of the GWs emitted by the mountain
have k that is near kw (or −kw), the forcing F is
only significant if there exists an altitude zw where
the background wind is perpendicular to kw, i.e. the
background wind has to pass from one side of the
ridges to the other when z increases. Such a favor-
able configuration is shown in the Fig. 1, and in this
case we obtain

F(z) ≈ F0
Ub(z)

‖Ub(z)‖2
k0(z)2 e

−L2‖kw‖2+L′2k2
0

(V0 ex − Ub(z) ey) , (23)

F0 =
1

2
√

π
H

2
0 L N Λ , (24)

k0 =
kw − lw

Ub(z)
V0

1 + Ub(z)2

V 2
0

; L
′2 =

(
1 +

Ub(z)2

V 2
0

)
L

2
. (25)

The vertical profile of F in Eq. (23) is displayed in
Fig. 2, for the cold front configuration presented in
Fig. 1 (parameters given in section 3). It is note-
worthy that whatever is the altitude z, F(z) is per-
pendicular to the background wind Ub(z), which is a
characteristic feature of breaking GWs at critical lev-
els. The force reaches its maximum at zw = 5km,
which is the altitude of the critical level associated to
kw, the wave vector for which the spectrum of GWs
is maximum. The force is significant over a vertical
width of about 1-2km, centered around zw, which will
refer to the critical zone in the rest of the paper.
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Figure 2: Vertical profile of the forcing F(z), cal-
culated in the reference cold front configuration de-
scribed in section 3.

Numerical resolution:

To determine the flow response, we first integrate φ̂p

using Eq. (14), by a trapezöıdal method on a model
with a vertical grid which resolution is 500 m. Then,
φ̂W and φ̂E are computed from the first order differ-
ential Eq. (16),(19), and the two upper boundary con-
ditions, in the horizontal Fourier space and for 512 ∗
512 harmonics. The corresponding horizontal mesh
size in the physical space is 40 km ∗ 40km ∗ 500 m,
for a 10000 km ∗ 10000 km ∗ 10 km global domain
box. The temporal integrals are computed with a
trapezöıdal method too, and the model’s time step is
DT = 6H .

3 Results

We first present the response for the idealized cold
front situation in Fig. 1. The parameters are chosen
as follows :

f = 10−4
s
−1

, N = 10−2
s
−1

, Λ = 4.10−3
s
−1

U0 = 0 and V0 = −20 ms
−1

The parameters that define the orography are :

H0 = 800 m , L = 200 km, and |kW | =
2π

70000
m

−1
.

These values lead to a dimensionless mountain height
ε = NH0

V0
≈ 0.4 < 1, for the mean orography and

ε = N 2H0

V0
< 0.8 < 1 for the small scale orog-

raphy, which justifies a linear treatment. The large
scale Rossby number is then V0

f L
∼ 1. We also take

̂(ex;kw) = π
4 , so that the critical zone centers around

the altitude zw such that :

kw.Ub(zw) = 0 that is zw = 5 km. (26)

In the following, we will refer to that case as the Ref-
erence Cold Front Configuration (RCFC).
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3.1 Potential vorticity anomaly
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Figure 3: Potential vorticity anomaly at t = 8h,
in the reference cold front configuration (RCFC)
(CI=0.05 PVU, 1 PVU=1.0 ∗ 10−6 K kg−1 m2 s−1).
Horizontal sections are shown in the critical zone, cen-
tered at zw = 5km. The range of values obtained is
indicated above each section and the negative con-
tours are dashed. The mountain is symbolized by the
thick circle.

The Fig. 3a,b and c show three horizontal sections of
the PV anomaly due to F (Eqs. (8)-(10)), expressed
in PV units (1 PVU=1.0 ∗ 10−6 K kg−1 m2 s−1).
At the three altitudes, the PV pattern is predom-
inantly oriented in the direction of the background
wind Ub(zw). This general orientation follows that,
once produced by the non-advective PV flux JN that
is maximum near the point (x = 0; z = zw) (Fig. 3b),
the PV anomaly is advected by the background flow.

Furthermore, it is noteworthy that the sign of the
PV changes vertically. This follows that the non ad-
vective PV flux JN has a vertical component −ΘyF

proportionnal to V0, hence oriented downward in this

cold front case (Fig. 3a), and with a maximum value
at z = zw (Fig. 3b). Because of this vertical asymme-
try of the PV anomaly, with the positive lobe under
the critical layer and the negative one above, one can
expect its influence near the ground to be predomi-
nantly cyclonic.

It may be emphasized here that the pattern, pre-
sented in Figs.3b, is strongly reminiscent of what oc-
curs for a start-up cyclone in a barotropic flow over
large scale mountains (Fig. 4). Lott (1999) has shown
that such a start-up cyclone and the associated anti-
cyclone attached to the ridge, are the natural conse-
quence of a force acting perpendicularly to the flow,
as it is the case here.
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Figure 4: Schematic representation of the mechanism
that produces the 3D PV disturbance in the model for
the RCFC, in the vicinity of the mountain, where the
non advective part of the PV flux JN is dominant.
a) Section at x = 0; b) Section at z = zw. The
schematic contours of PV correspond to values found
near the start up t = 0.

3.2 Surface Potential

The time evolution of the surface potential φE , due
to H, is shown in fig. 5 a,b and c every 12 hours.

Consistent with Smith (1986), a stable boundary
Eady wave is developping and extending downwind.
This baroclinic lee wave is characterized by an anti-
cyclonic pattern standing on the mountain. Immedi-
ately downstream of the mountain a trough is taking
place, whose minimum reaches -1.3 mbar after 36 hrs
(Fig. 5c).

The evolution of φW , the surface potential due
to F, is shown in fig. 5 d, e and f. As expected, the
breaking GWs also excite a boundary Eady wave, with
a minimum magnitude comparable to that of φE . At
t=36hrs, the minimum and maximum reach respec-
tively -1.1 mb and 0.7 mb. Nevertheless, several dif-
ferences are noticeable : i) the GWs do not induce a
persistant anticyclonic pattern over the mountain; ii)
the main cyclonic lobe is developping along the axis
of the background wind in the critical zone, that is
at -45◦ of the x-axis; iii) the wavelength of the dis-
turbance is about 2000 km, and substantially larger
than that of φE .
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Recalling that the PV anomaly q, in our system,
is felt at the ground through the weighted average in
Eq. (18), we can explain these three differences : i)
follows that the positive PV lobe at z = 4.5 km hides
in part the predominantly negative PV values found
over the mountain and above that altitude (Fig. 3.a
and 3.b); ii) follows that the PV anomaly extends
along the -45◦ direction as well (Fig. 3); and iii) fol-
lows that the e-folding vertical decay length 1

λr
in

Eq. (18) decreases when the horizontal wavenumber

increases.

The fig. 5 g,h and i show the sum of the two con-
tributions. The extrema observed at t=36 hrs show
that the first downstream trough induced by the en-
veloppe (φE) is slightly rëınforced by the GWs and
reaches -1.6 mb, while the anticyclone over the moun-
tain is almost unchanged. Notably, the trough just in
the lee of the mountain, that is in the first thousand
of kilometers, is slightly deepened.
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Figure 5: Evolution of the potential at the surface in the RCFC, with the same conventions as in fig. 3 (CI=0.2
mbar). a), b) and c) : part of the potential excited by the enveloppe of the mountain H(x) (φE), respectively
at t=12 hrs, 24 hrs and 36 hrs; d), e) and f) : part of the potential due to the inflow PV anomaly deposited
by the breaking GWs (φW ); g), h) and i) : total disturbance at the surface (φE + φW ). The extreme values
reached at t=36 hrs are indicated at the top of each column.
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4 Sensitivity tests

The warm front configuration

A Reference Warm Front Configuration (RWFC) is
specified by inverting the wind at the surface :

V0 = 20 ms−1

To obtain a significant force F in that case we also
need to rotate the ridges and take lw = −kw < 0.
All the other parameters stay equal to those in the
previous case.

−0.5 0 0.5 1
−0.5

0

0.5

1

4.5 km

 q ( PVU ) : [ −0.68; 0.02 ]

 x  ( 1000km )

 y
  (

 1
00

0k
m

 )

−0.5 0 0.5 1
−0.5

0

0.5

1

5.0 km

 y
  (

 1
00

0k
m

 )

 q ( PVU ) : [ −0.38; 0.44 ]
−0.5 0 0.5 1

−0.5

0

0.5

1

5.5 km

 y
  (

 1
00

0k
m

 )

 q ( PVU ) : [ −0.03; 0.54 ]

a) 

b) 

c) 

k
w

 

Λ 

V
0
 

Figure 6: Potential vorticity anomaly at t = 8h, in
the RWFC, with the same conventions as in fig. 3
(CI=0.05 PVU).

The PV anomaly obtained has the same dipolar
struture as in the RCFC, it is oriented along the back-
ground wind near zw, which is south-west north east
(Fig. 6). Because of this asymmetry, and while the
response to the enveloppe φE is exactly the mirror
image as regards to the x-axis of that found in the
cold front case (Fig. 7a, b and c), the response to the
breaking GWs φW is not symmetrical to the previous
one (Fig. 7d, e and f). More precisely, now the bound-
ary Eady wave is dominated by a strong anticyclonic

lobe which stays attached to the mountain. Notably,
in this RWFC, the breaking mountain GWs rëınforce
both the downslope trough and the anticyclone over
the mountain.

Results with a tropopause : allowing baroclinic

instability

Now we come back to the initial problem of section 2,
and we consider the existence of an upper rigid lid at
the altitude D = 10 km, allowing baroclinic instabil-
ity. We find that under approximately one day and a
half, the baroclinic growth is negligeable, which justi-
fies the previous approach without any upper bound-
ary. Thereafter, a substantial signal due to unstable
modes start to dominate the response in the far field
(i.e. far from the mountain range, and attached to
the PV anomalies produced in the first few hours and
that are advected downstream).

5 Conclusion

In this paper we have presented the building up and
the use of a rather simple tool for studying the impact
of mountain GWs breaking at turning critical levels on
the large scale flow. The rather academic and ana-
lytical nature of the model allows us to understand
the physical mechanisms induced in this problem. An
interest of the method is to separate the effect of
the large scale mean orography from the effect of the
small scale breaking GWs, and to compare their rela-
tive importance.

We have shown that the impact of the break-
ing GWs emitted by the small scales of the orogra-
phy, in terms of surface potential, can be comparable
to the impact of the enveloppe. We have identified
the different processes that have an influence on the
strength of this effect, and on the characteristics of
the pattern at the surface. The relative configuration
of the background wind as regards to the vector kw

defining the orientation and the width of the parallel
ridges is crucial. It controls notably the altitude of the
critical zone, and thus influences strongly the ampli-
tude of the perturbation at the ground. Typically, a
favorable case is obtained when the background wind
passes from one side of the ridges to the other when z

increases. Furthermore, we have identified some con-
figurations, with a cold front and then a warm front,
where the breaking GWs rëınforce both the downslope
trough and the anticyclone over the mountain due to
the enveloppe. The presence of unstable Eady modes,
introduced here by taking into account a rigid lid,
does not modify substantially those results, at least
during one day or two. In a longer term and in the
far field, nevertheless, we also found that GWs can
trigger substantial baroclinic instability growth.
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Figure 7: Evolution of the potential at the surface in the RWFC, with the same conventions as in fig. 5
(CI=0.2 mbar).

References

[1] Smith R. B. Further development of a theory of
lee cyclogenesis. Journal of the Atmospheric Sci-
ences, 43(15):1582–1602, August 1986.

[2] Schär C. and Smith R. B. Shallow-water flow past
isolated topography. part i: Vorticity production
and wake formation. Journal of the Atmospheric
Sciences, 50(10):1373–1400, May 1993.

[3] Schär C. and Durran D. R. Vortex formation and
vortex shedding in continuously stratified flows
past isolated topography. Journal of the Atmo-
spheric Sciences, 54(4):533–554, February 1997.

[4] Lott F. Alleviation of stationary biases in a
gcm through a mountain drag parametrization

scheme and a simple representation of mountain
lift forces. Monthly Weather Review, 127:788–
801, 1999.

[5] Lott F. Large scale flow response to short gravity
waves breaking in a rotating shear flow. Journal of
the Atmospheric Sciences, 60:1691–1704, 2003.

[6] Hoskins B. J. The geostrophic momentum ap-
proximation and the semi-geostrophic equations.
Journal of the Atmospheric Sciences, 32(2):233–
242, February 1975.

[7] Shutts G. J. Stationary gravity-wave structure
in flows with directional wind shear. Quaterly
Journal of the Royal Meteorological Society,
124:1421–1442, 1998.

7


