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1. INTRODUCTION 
 

Rising attention of fresh water supply and flash-flood 
management demands greater understanding of the 
orographic precipitation (OP) problem. Atmospheric 
problems such as OP are often buried in a complex airflow 
picture, challenging to fully explore with sparse traditional 
observational network. Numerical model simulations 
provide a virtual laboratory in which thorough analysis can 
be carried out. In real case studies, they may also bridge 
data gaps. 

Studies (e.g. Smith et al. 2002) have shown that 
models reproduce OP events very differently, despite 
similar upstream conditions. What mechanisms in the 
models are responsible? How can we address this issue?  

We aim at doing a water analysis of an OP-system, 
and identify its controlling parameters. Moreover, the OP-
system is simulated in a numerical model that conserves 
water, and the result is compared with a linear model. 
Linearization simplifies a problem and makes the analysis 
transparent. However, crucial non-linear growth 
mechanism may be lost.  

   
 

2. MODELS 
 
In order to undertake a thorough analysis of an OP-

system, we utilize the warm rain system proposed by 
Grabowski and Smolarkiewicz (2002): 
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where qv=water vapor mixing ratio, qc =cloud water mixing 
ratio, qr=mixing ratio of hydrometeors. The source/sink 
terms on the right-hand side (r.h.s.) are: Cd=condensation 
rate, Ep=evaporation rate of hydrometeors, Ap=auto-
conversion rate, Cp=accretion rate.  The 1st term on the 
r.h.s. of (1c) is precipitation, the final loss to the system. 
The other symbols follow normal conventions. 

Herein, we limit ourselves to only a brief derivation of 
the characterizing measures: Essentially, (1) is assumed 
steady-state and integrated over a control volume V, Fig.1. 

The Gauss-theorem is applied for the 2nd terms on the 
l.h.s. giving a net flux into the volume F2-F1.  

  

 
FIGURE 1: Condensation upstream the hill enclosed in a 
control volume. 
 
Adding the three equations together and neglecting fluxes 
of cloud water or hydro-meteors through the walls, (1) may 
be written as 
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were DR is the drying ratio of the system. The area 
integrated precipitation P is normalized with the influx of 
water vapor F1v.  DR is a global measure characterizing 
the system. However, DR does not tell us anything about 
the interior mechanisms. To address this issue, we rewrite 
a steady-state version of (1) in terms of positive defined 
volume integrated quantities, 

rcc
vv EvEvCoFF ++−=− 12           (3a) 

cc EvAccAutCo −−−=0           (3b) 
rEvAccAutP −++−=0           (3c) 

“Ev” / ”Co” denote evaporation and condensation of water 
vapor and superscripts denote to which water species the 
term links to. We define the precipitation efficiency (PE) as 
a measure of conversion from cloud water to precipitation, 
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and a similar ratio for condensation, 
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so we get 
 

DRCRPE =⋅                (6) 
 



With the PE-measure, we have isolated the micro-physical 
part of the system from the one of airflow dynamics (CR). 
DR shows the effect of the two combined. The remaining 
terms on the r.h.s. of (3) may be normalized with P to find 
their effectiveness producing precipitation. Herein, we limit 
ourselves to a measure of the re-evaporation of hydro-
meteors; 
 

PEvHYRE r /=                (7). 
 
enabling us to identify re-evaporation of hydro-meteors as 
they fall into dry air.  

In case of a ice-phase scheme, the analysis must at 
least have a growth term in (1c) receiving water directly 
from (1a), thus (3a),(4) and (5) will have additional terms.  

The linear model (Smith and Barstad, 2004) is briefly 
described as follows: The model has vertical integrated 
cloud water and hydrometeors advected by a 
homogeneous background flow. The transformation to and 
the fall-out of hydrometeors is linked to a cloud delay 
constants (τ), see J14.2 in this proceeding.  The PE, CR 
and DR for the linear model of Smith and Barstad (2004) 
are: 
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where S is the condensation rate without airflow dynamics 
(Smith, 1979), U the horizontal wind, qos=saturate mixing 
ratio of water vapor at the surface and Hw is the scale 
height of water vapor. 

The main free parameters in the linear model are the 
two τ’s controlling the spill-over into drying regions. In 
order to compare the two models, some over-all residence 
time for the cloud water must be estimated for the non-
linear system. From volume integrated quantities of the 
linear model, the following equivalent expressions may be 
derived for the non-linear system: 
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3. DESIGN OF THE EXPERIMENTS 
 

The response from the nonlinear system (1) was 
simulated as uniform air (U=15m/s, N=0.012s-1, 
Rh=100%) flowed over a Gaussian shaped ridge. The 
standard height of the ridge is 500m and half-width is 
30km. The lower boundary had free-slip condition, and the 
simulations had no explicit diffusion.  A numerical model 
based on non-oscillatory MPDATA advection scheme 
(Smolarkiewicz and Margolin, 1998) conserving 

transported quantities (e.g.water) was used. The grid 
distance was 300m both vertically and horizontally. The 
simulations started from potential flow and any 
perturbation towards the upper and lateral boundaries 
were dampened. The linear model was run 
correspondingly for similar set-up. 

In linear theory of airflow dynamics, the non-
dimensional mountain height (hm=Nh/U) is the controlling 
parameter. Smith and Barstad (2004) and Barstad and 
Smith (2004) found that the linear micro-physics depends 
on Uτ/a, when the τ’s are set equal. Therefore, it is natural 
to first of all vary the mountain height (h) and the half-
width (a) of the mountain to test the sensitivity to 
characteristic measures derived. 

 
 

4. RESULTS 
 

Fig.2 shows that CRl (linear model; broken line) is 
unaffected by the non-linearities (solid line) as the 
mountain becomes tall. The effective stability is about 
N=0.009s-1, so the non-linear behavior becomes 
increasingly important after Nh/U=0.45 (h=750m). The 
DR-measure responds directly to the wave dynamics, 
following the same pattern. The black solid straight line in 
Fig.2, is condensation without airflow dynamics (i.e. 
perfect penetration of forced ascent). In the non-linear 
model, the PE (eq. 4) drops and increases the gap 
between CR and DR for taller mountains.  

  

 
FIGURE 2: Efficiency ratio versus mountain height. Solid 
line represents the non-linear model, and broken line the 
linear model. The “Raw” is the condensation without 
airflow dynamics. 

 
We now turn to variations in mountain half-width. 

Fig.3 shows that the linear model has high efficiency in 
precipitating water for short tau (200s). The quick rise in 
PE is distinct. The longer tau runs are similar to the non-
linear model; a gentler rise for wider ridges. The re-
evaporation (HYRE) of hydro-meteors drops significantly 
around 15-30km. For half-widths less than 5km, HYRE 
rises sharply due to larger amount of hydro-meteors 
carries over into the drying regions.  

Non-hydrostatic effects will have some influence for 
narrow ridges. Lee-waves trailing off downstream may 



produce condensation, but not precipitation. On the other 
hand, forcing from short wave lengths results in rapid 
damping of vertical velocity with height limiting the 
condensation. Both these effects are apparent in the linear 
model, Fig.4. The maximum CR is located between 3-5km 
half-width where the lee-waves produce large amount of 
condensate. The strong damping of the vertical 
propagation is seen for even shorter wave lengths. The 
non-linear model does not reach a steady-state because 
the trailing lee-waves evolve very slowly, and accordingly 
the maximum of CR does not reach as high.  

 

 
FIGURE 3: Efficiency versus mountain width. PEl (broken 
line) for both tau=200s and 1200s is shown. Re-
evaporation of hydro-meteors (HYRE) is also indicated. 

  
 

 
FIGURE 4: Efficiency versus half-width, discussing non-
hydrostatic effects. 
 
 
5. DISCUSSION 
 

Based on (11) and (12), the two cloud delay factors 
(tau) are estimated in the non-linear model. For the most 
part, both tau’s are found to be in the range from 100-
300s. From the figures portrayed herein, the PE becomes 
too high, or the efficiency is too great compare to the non-
linear model. We may search for the reason among the 

assumptions in the linear model. The bulk value given by 
the vertically integrated condensation rate in the linear 
model camouflages the condensation/evaporation in the 
column. However, in the non-linear model, both 
evaporation and condensation in a column count 
separately in the summation procedure. Checks with the 
non-linear model reveal that this linear model assumption 
is not the major cause of discrepancy. Another important 
simplification concerns is the non-linearity in the cloud 
physics (i.e. accretion-term). Also the evaporation of 
hydro-meteors in the linear model has the same time 
delay as condensation.  
 
 
6. CONCLUSIONS 
 

A water analysis of the orographic precipitating 
system is undertaken, and some characterizing measures 
are identified. The effects of cloud-physics and the airflow 
dynamics are separated with the precipitation efficiency 
(PE) and the condensation ratio (CR) respectively. The 
combined effect is represented by the drying ratio (DR).  

Two models, a linear and a non-linear, were 
employed to investigate how characterizing measures 
changes as mountain half-width and height vary.  The 
linear model seems to represent the airflow dynamics 
reasonably well. In the cloud-physics, it seems to be larger 
discrepancy which not yet has been fully explored.    
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