
P7.2  
 

A MODELING STUDY OF KATABATIC FLOWS OVER SLOPES WITH CHANGING SLOPE ANGLE 
 

Craig Smith and Eric Skyllingstad 
College of Oceanic and Atmospheric Sciences 

Oregon State University 

1.  Introduction 

Atmospheric conditions in mountain basins 
are controlled by a number of processes 
generated both locally and by synoptic scale 
weather systems.  When synoptic conditions are 
relatively weak, for example during anticyclone 
periods, basin circulations often follow a diurnal 
cycle with upslope flow during the day when 
surrounding mountains are heated, and down 
slope flows in the nighttime when the same slopes 
are cooled.  Down-slope flows transport dense air 
into mountain basins and contribute to stagnant 
conditions during the winter season by filling the 
basin with relatively cold air, enhancing the strong 
stratification generated by local radiative cooling. 

Accurate prediction of down-slope flows is 
critical for predicting how basin circulations will 
evolve.  However, because down slope flows are 
usually shallow and stratified, it is not clear if 
current mesoscale models are capable of 
simulating these flows with enough fidelity to 
accurately predict fluxes in and out of mountain 
basins.  Furthermore, accurate simulation of 
terrain-induced atmospheric phenomena, such as 
slope flows, depends on how well terrain is 
resolved within the model.  In some cases, 
inadequate terrain resolution can lead to an error 
in the depth and magnitude of drainage flows.  For 
example, application of smoothing algorithms to 
complex terrain data in a model with inadequate 
resolution can lead to an increase in average 
terrain height in regions with steep slopes.   
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For katabatic flows (downslope flows forced by 
surface cooling), air parcels over a slope have a 
buoyant potential energy that is proportional to 
their height above the valley floor.  Conversion of 
buoyant potential energy into kinetic energy is 
increased when terrain-smoothing algorithms 
increase the average terrain height by removing 
sharp terrain gradients without proper weighting.  
Consequently, terrain smoothing can lead to an 
over prediction of the katabatic flow magnitude. 

 An example showing how a typical 
smoothing scheme affects terrain at various 
resolutions is presented in Fig. 1, which shows an 
arbitrary cross-section through the Wasatch 
Range along the eastern edge of the Salt Lake 
valley floor.  Terrain has been smoothed over 
using the Barnes (1964) objective analysis 
method (Xue et al, 2000) in the Advanced 
Regional Predictions System (ARPS) model 
initialization package, which does not conserve 
average terrain height.  Effective terrain height 
along the slope is elevated by the Barnes analysis 
method as grid spacing is increased.  Overall, the 
Barnes scheme increases the effective height of 
slopes in areas of concave terrain, which can 
strongly affect the dynamics of modeled slope 
flows. 

Our main goal in this paper is to examine 
how changes in terrain shape affect katabatic flow 
properties.  We compare mesoscale models of 
katabatic flows over a simple, uniform slope and a 
compound-angled slope to check the consistency 
of both models.  These experiments allow us to 
examine how slope flow evolution is controlled by 
turbulence fluxes and how the flow adjusts to 
changes in slope angle.  Finally, we examine the 
energy budget of slope flows by relating the flow 
evolution to the conversion of potential energy into 
kinetic energy.  

 



 
 

 

 
Figure 1.  Terrain height (m) thru an arbitrary 
cross-section of the Wasatch Range along the 
eastern edge of the Salt Lake valley floor 
calculated using horizontal grid spacings of (a) 
1, (b) 2.5, and (c) 5-km from the ARPS 
initialization package. 

 

2.  Model Setup 

The mesoscale model used in our 
experiments is the Advanced Regional Prediction 
System (ARPS) described in Xue et al. (1999).  
ARPS is a nonhydrostatic, compressible model 
which utilizes a terrain-following coordinate 
system with a stretched vertical grid.  Here, we 
used the model in a two-dimensional framework, 
representing a section across an infinite ridgeline.  
The model domain was 32 km by 0.6 km by 4 km 
in the x, y and z directions, respectively.  Grid 
spacing was 100 m by 100 m in the horizontal 
with 320 grid points in the x direction and 6 grid 
points in the y direction.  The terrain-following 
vertical coordinate was stretched to allow for a 
very fine grid size of 5 m near the surface where 
resolution is critical, expanding to 50 m well above 
the surface where flow variations were small.  
Eighty vertical levels were used spanning a total 
distance of 4 km with rigid top and bottom 
boundary conditions.  Periodic boundary 
conditions were used in the cross-slope, y 
direction, while in the down-slope, x direction the 
boundary conditions were open (radiation).  
Simulations are forced with a constant surface 
cooling rate of 30 Wm-2, radiation and moisture 
effects were not considered in our experiments.  
Surface roughness lengths were set to 0.01 m.  

The atmosphere was initialized at rest with a 
potential temperature of 18 oC.  Simulations were 
conducted for one hour of model time, which was 
long enough for the katabatic flows to reach near 
steady state.   

Simple (1 slope angle) and compound 
(two slope angles) slope comparisons utilized a 
linear terrain profile to focus specifically on the 
effect of terrain smoothing on katabatic flows.  An 
x-z cross section of the model right-hand side 
slope for the compound and simple slopes is 
shown in Fig. 2. In our idealized example, the 
compound slope is considered representative of 
the 'true' terrain, including slope angle changes 
and sub-grid scale terrain features, while the 
simple slope is representative of smoothed-over 
and inadequately resolved terrain.  This can be 
considered as representative of a smoothing 
scheme that reduced regions of steep slope angle 
by filling in valley side walls, a common result of 
typical smoothing schemes.  For the purposes of 
this study, the simple slope is constrained to have 
the same horizontal distance and height as the 
compound slope.  The lower- and upper-slope 
angles of the compound slope were set to α1 = 
1.60, and α 2 = 11.60, yielding an equivalent simple 
slope angle of α s = 6.50.  The total height of the 
compound and simple slope terrain was set to 822 
m, giving a total horizontal run for the two slope 
scenarios of 7.3 km. 

 
Figure 2.  Cross section of a portion of the 
model domain for the simple/compound runs. 

 

3.  Results and Discussion 

Cross section plots from the two 
simulations are presented in Fig. 3.  A number of 



distinct flow features are produced in the two 
scenarios.  First, we note that except near the top 
of the slope, the uniform slope generates a 
stronger jet in comparison with the compound 
slope case.  Slope flow depth, however, is greater 
for the compound case over the same slope 
region.  Temperature deficit in the uniform slope 
case is less than the compound slope case, 
especially over the lower portion of the slope 
where the low angle slope in the compound case 
limits buoyant forcing of the flow.  Weaker winds 
in the compound angle case limit the transport of 
cold air down the slope, leading to a greater 
temperature deficit.   

 
(a) u 
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Figure 3.  Cross sections (x-z) of (a) down-
slope velocity, u (m s-1) and (b) potential 
temperature deficit, ∆θ (oC), from the 
compound and uniform slope flows.  The arrow 

indicates the location of the slope angle 
change. 

 

A supercritical transition in the flow occurs 
in the flow in the region of the slope angle change.  
A plot illustrating the effect of transition period on 
the flow is presented in Fig. 4, which shows 
downslope velocity versus height 200 m before 
and after the change in slope angle for the 
compound angled case.  This transition period 
consists of mass convergence and deepening of 
the flow, and as slight increase in the depth of the 
jet. 

 

 
 

 
Figure 4.  Plot of down-slope velocity, u (m s-1) 
from the compound slope flows, 200 m before 
(solid) and after (dashed) the change in slope 
angle. 

 

Because surface cooling rates are held 
constant, buoyancy deficits in the flow are largely 
controlled by flow velocity and slope angle.  This 
has important implications for the momentum 
budget of the flow.  The mean momentum 
equation in the down-slope direction, neglecting 
storage and the Coriolis term, may be written as in 
Mahrt (1982), 
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where the pressure gradient term has been 
rewritten using hydrostatic balance so that 
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 The layer average potential temperature is 
defined as  
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andθ0 represents a constant, reference potential 
temperature.  Turbulent flux divergence is 
expressed as an eddy viscosity flux, 
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Following Mahrt (1982), terms in the momentum 
budget equation are grouped as follows.  Term I is 
the sum of the buoyancy and pressure terms, 
including the katabatic acceleration, which is the 
primary driving force for the flow.  Term II is the 
thermal wind term, which represents a retarding 
factor due the down-slope increase in stability.  
For the flows presented here, the thermal wind 
term is much smaller than the katabatic 
acceleration term.  Term III is the sum of turbulent 
mixing and surface drag, which is included as a 
boundary condition.  Term IV is the sum of the 
down-slope and slope-normal advection terms, 
and represents the horizontal advection of lower 
momentum from up-slope.   

Previous studies, such as Nappo and Rao 
(1987), indicate that the bulk velocity magnitude of 
katabatic flows is a strong function of slope angle 
as indicated by term I of the momentum equation.   
Therefore, in the compound slope angle case it’s 
reasonable to expect a flow transition when going 
from the high to low angle sections of the slope as 
shown by Fig. 3 (assuming the flow is near 
equilibrium).  Forces acting on air parcels moving 
through the slope angle transition change 
suddenly, with term I decreasing rapidly thru the 
change in slope angle.  To maintain balance 
between the momentum budget terms, the flow 
can either lose momentum via vertical mixing and 
surface drag (increasing term III) or undergo a 

reduction in the advection magnitude (term IV).  
Figure 3 suggests that both of these mechanisms 
are active in the compound slope flow case; the 
depth of the flow increases more rapidly and the 
strength of the near surface jet decreases so that 
the surface drag is smaller.  Reduced surface 
velocity also decreases the downslope advection 
term (IV) downstream from the angle change.   

Plotting the vertically averaged mixing and 
drag term (III) normalized by buoyancy (I) 
provides a more direct example of this effect (Fig. 
5).  For most of the slope flow, the vertical mixing 
and drag term balances about 70% of the 
buoyancy forcing.  When the slope angle changes, 
the buoyancy term decreases rapidly to the point 
where term III is larger than term I.  Adjustment 
occurs as the flow depth increases and the near 
surface velocity decreases between x = 3500 and 
4500 m.  Slower down slope velocities also 
increase the potential temperature deficit because 
the air has more time to cool before advecting 
down slope. 

 
 

 
 

 
Figure 5.  Vertically integrated normalized 
mixing and drag versus down-slope distance 
for the compound (solid) and simple (dashed) 
slope flows. 

 

4.  Energetics of Slope Flows 

Effects of slope angle changes are made 
clearer by examining the total energy budget of 
the flow system.   In slope flows, the source of 
total kinetic energy is gravitational potential 
energy, defined here as a flow depth average, 
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where h is the slope height above the valley floor 
and the integration is performed to 150 m above 
the local surface.   Similarly, we define the depth 
average total kinetic energy as 
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Katabatic flows are generated when buoyant 
potential energy is added to the system through 
surface cooling and converted into kinetic energy.  
Kinetic energy is lost primarily via surface drag 
and dissipation of turbulence.  Plots of PE and KE 
from the uniform slope ARPS case (Fig. 6) 
demonstrate how the total energy is partitioned 
along the slope.  Near the top of the slope, PE 
climbs rapidly to a maximum while the KE field 
slowly increases from the initial state of no motion.  
Rapid growth of PE is produced by the relatively 
high altitude of the slope and the limited amount 
of time available for the slope flow to accelerate.  
For an equilibrium slope flow in a neutral 
atmosphere, the down hill flux of heat at any point 
along the slope must equal the total heat lost to 
the surface along the slope above the point.  Near 
the top of the slope, the down slope velocities are 
relatively weak, consequently the temperature 
deficit must be large to yield a down hill heat flux 
equal to the total surface heat loss. 
 
 

 
 

Figure 6.  Vertically integrated total kinetic 
energy (solid) and buoyant potential energy 
(dashed) versus down-slope distance for the 
uniform slope case. 

   
 Moving down the slope, PE decreases as 
KE increases, so that the flow eventually has an 
equal energy partition at x = ~6500 m.  Figure 6 

shows that PE decreases more rapidly than the 
increase in KE in the lower half of the slope.  
Energy loss from surface drag and turbulence 
dissipation prevents the total KE from balancing 
the decrease in PE.  At the bottom of the slope, 
KE reaches a maximum that is about 1/3 of the 
maximum PE value on the upper slope, indicating 
that about 33% of the available PE is converted to 
KE for a 6.5o slope. 

Examination of the PE and KE fields from 
the compound angle case shows how important 
slope angle is in determining the available energy 
for down slope flows (Fig. 7).  In the compound 
angle case, PE increases more slowly at the top 
of the slope in comparison with the uniform slope 
case.  This is because the slope height is 
decreasing more rapidly and KE is growing faster 
in the compound angle slope flow.  By the time 
the flow reaches the change in slope angle, it has 
almost twice the KE as in the uniform slope angle 
case.  However, the PE is much less in the 
compound case, which greatly affects the growth 
in KE down slope from the transition.  
Interestingly, PE in the transition zone down slope 
from the angle change increases slightly after 
having fallen from a peak value of  ~300 at x = 
~1500 m.  The increase in PE results from the 
added vertical mixing of potential temperature, 
noted above, that occurs when the flow 
decelerates.  More significant near surface cooling 
in the lower angle slope region also adds to the 
PE. 

Because PE decreases more rapidly in the 
compound slope case, KE is unable to increase 
significantly down slope from the angle transition.  
In contrast, the uniform slope case KE continues 
to increase, reaching a value about 50% larger at 
the slope bottom than the compound angle case.  

Higher PE in the uniform slope case 
ultimately leads to more KE at the base of the 
slope and a greater exchange of air between the 
top of the slope and the valley floor.  A similar 
behavior can be expected in mesoscale 
simulations that use terrain smoothed without 
conserving the total terrain height.  For example, 
in basin regions we would expect stronger slope 
flows in comparison with observations, which 
could have important implications for valley 
circulations and the transport of pollutants. 



 
 

 
 

 
 
 
 

Figure 7.  (a) Vertically integrated buoyant 
potential energy and (b) kinetic energy versus 
down-slope distance for the compound angle 
(solid) and uniform angle (dashed) slopes.  
The arrow indicates the location of the slope 
angle change. 

 

5.  Conclusions 
Simulations of a compound angle slope are 

performed to demonstrate how changing slope 
angle can strongly affect the strength of down 
slope winds in katabatic flows.  Slopes with a 
steep upper slope followed by a shallower lower 
slope (concave shape) generate a rapid 
acceleration on the upper slope followed by a 
transition to a slower evolving structure 
characterized by an elevated jet over the lower 
slope.  In contrast, a case with uniform slope 
having the same total height change yields a more 
uniform slope flow profile with stronger winds at 
the slope bottom.  Less available potential energy 
in the compound-slope case is shown to 
dramatically decrease the flow kinetic energy in 
comparison with the uniform slope example. 

Our results show that the accuracy of 
katabatic flow predictions is inherently tied to 
terrain resolution within the model.  Common 

ways in which terrain is smoothed in initialization 
packages can have the effect of reducing slope 
angle without conserving the average terrain 
height.  For example, slopes with a concave 
shape may be filled as a means of maintaining the 
effective barrier height of a mountain range (e.g. 
Coupled Ocean/Atmosphere Mesoscale 
Prediction System, Chen et al., 2003).  Terrain 
smoothing that does not conserve the average 
terrain height can cause an increase or decrease 
in production of potential energy available for 
slope flows.  The net effect is unrealistic slope 
flow predictions that can produce large errors in 
valley and basin circulations.  Our results suggest 
that terrain initialization methods should strive to 
maintain the average terrain height.  If maintaining 
blocking height is important, then surface fluxes 
may need to be weighted to account for smoothed 
terrain having a larger effective height than the 
actual terrain. 
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