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1. INTRODUCTION

Several investigators (Comte-Bellot and Corrsin 1971;
Kaimal and Finnigan 1994, p. 276; Sreenivasan et al. 1978; de
Waele et al. 2002) have reported the property of stationary
turbulence time series that the integral scale (defined in the
classical way) is always zero. This property is strange because
it is known that the true autocovariance (defined via ensemble
averaging) does not always have zero integral scale. In other
words, the autocovariance determined through Reynolds
averaging of stationary turbulence time series and the
autocovariance determined through ensemble averaging of
stationary turbulence time series do not have equipollent
properties. Lumley and Panofsky (1964, p.14) state that the
“major simplification that stationarity permits is the
introduction of time (or space) averages which are meaningful
in the sense that their values represent properties of the
process and not just of the averaging time.” Specifically, after
they have been averaged, turbulence data must satisfy other
criteria.

Given that the integral scale is a measure of the
‘randomness’ in turbulence, small integral scale implying a
highly random turbulence and large integral scale implying a
not-so-random turbulence, questions thus arise as to why the
zero integral scale feature perpetually manifests in Reynolds
analysis of stationary turbulence time series and what are its
dynamical implications. A perpetual zero integral scale
suggests that the underlying turbulence is extremely random
all the time, a condition not in harmony with characteristics of
the boundary layer. Another question is how to reconcile the
differences between dynamical implications of the
autocovariance determined by Reynolds averaging and the
autocovariance determined by ensemble averaging. Lumley
and Panofsky (1964, p. 37) state “in order to make sensible
interpretations of experimental measurements of a process, we
must assume that integral scales exist.” The conflict between
the Reynolds averaging algorithm and its practical
implementation via block averaging is evident.

Before proceeding further, though, it’s important to make
a distinction between the actual physical phenomenon (i.e.,
the turbulence), our measurements of that phenomenon (the
recorded time series), and a Reynolds average analysis of that
time series. The turbulence should have an integral scale (cf.
Lumley and Panofsky 1964, p. 37). If our measurements are
valid, the raw time series will sustain this property. And for
our analysis algorithm to have merit, it must display, and not
annihilate, this feature. The issue we address here is neither
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the turbulence nor the recorded time series. It’s the analysis
algorithm (block averaging) and its integral scale
incompatibility with turbulence. Keep in mind, though, that
the validity of any analysis algorithm is limited by how
faithfully the recorded time series captures the time-dependent
properties of the turbulence. Here we assume that all
measurements are valid to some specification of numerical
accuracy.

2. REYNOLDS AVERAGING

The answer to the first of the above questions is
straightforward—the perpetual zero integral scale feature
manifests because Reynolds averaging requires it. Consider
an arbitrary time series, say U(t) defined over the domain
[0,T] where T is on the order of several hours. In Reynolds
averaging, we find the turbulent fluctuations over a succession
of adjacent time blocks, each labeled generically as i and each
of length ∆T, by averaging U(t) according to
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Ui (ΔT) =
1
ΔT

Ui (t)d
0

ΔT
∫ t, i = 1,2,3,...,N , (1)

where ∆T<T and 
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Ui (t)  is the portion of the total time series
in the i-th block. Turbulent fluctuations for the i-th block are
then just
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u i (t,ΔT) = U(t)−Ui (ΔT) . (2)

From (1) and (2) it follows that 
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u i (t,ΔT) = 0  and that

€ 

1
ΔT

ui (ζ,ΔT)dζ
0

ΔT
∫

 

 
 

 

 
 

2

=

( 1
ΔT

)2 u i (ζ1,ΔT)u i (ζ 2,ΔT)dζ1
0

ΔT
∫ dζ 2

0

ΔT
∫ = 0

. (3)

Changing variables according to ζ=(ζ1+ζ2)/2 and τ=ζ2-ζ1

allows the double integral in (3) to be expressed as (cf.
Papoulis 1965, p. 325; Panofsky and Dutton 1984, p. 62f.)
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∫ dτ .  (4)

The integral within 

€ 

( ) in (4) is the autocovariance for the i-th
block and is denoted as 

€ 

Ci (τ,ΔT) . Invoking the definition of
the integral scale reduces (4) to
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1
ΔT

Ci (τ,ΔT)
−ΔT

ΔT
∫ dτ =

2σ i
2 (ΔT)Λ i (ΔT)

ΔT
= 0 . (5)

Here 

€ 

σ i
2 (ΔT)  is the variance for the i-th block, sometimes

called the ‘local variance’, and 

€ 

Λ i (ΔT)  is the integral scale
for the same block, correspondingly called the local integral
scale. In these, we retain ∆T to remind us of the averaging
interval. Since ∆T is finite and the variance is always positive,
(5) requires that 

€ 

Λ i  always be zero. In effect, (5) renders
questionable the related τ-functional form of 

€ 

Ci (τ,ΔT) .
This same result is also true for cross-covariances. That

is, if we correlate 

€ 

u i (t,ΔT)  with, say, 

€ 

wi (t,ΔT) , where

€ 

wi (t,ΔT)  is the random part of the vertical velocity and is
defined by an equation similar to (2), then, since

€ 

wi (t,ΔT) = 0 , we can likewise formulate equations for cross-
covariances similar to (3)-(5), with the result that the net area
under the cross-covariances curve is also zero. The same
holds true for cross-covariances between a random velocity
and a random pressure 

€ 

pi (t) . In fact, any time we correlate
two stationary time series, one of which whose time average
is zero, we get correlations with zero net area under the curve.
Sreenivasan et al. (1978) emphasize this point for
autocovariances, viz. “the integral scale…must strictly be zero
for a random variable with zero mean.”

Suppose now that the turbulence is nonstationary over
some block, say, the j-th block. Nonstationarity is often
characterized by periods of rapid boundary layer growth or
decay or the passage of clouds or fronts. During these periods,
a block average only formally obeys traditional Reynolds
averaging rules since it is ‘bogus’ in the sense that, unlike the
stationary case, it does not provide any information about the
ensemble mean. For example, suppose that in the j-th time
block there is a small trend defined by ε t . That is,

€ 

Uj(t) = u j (t) +εt , where ε is a ‘small’ but non-negligible
constant. The time average of this 

€ 

Uj(t)  is 

€ 

0.5εΔT  where,
for convenience, we’ve assumed that the time average of

€ 

u j (t)  is zero.
Suppose next that the trend is instead ε(∆T-t), which is

the original trend reflected in the horizontal line 0.5εΔT. The
time average of this 

€ 

Uj(t)  is also 

€ 

0.5εΔT . The ensemble
mean of each, however, is different from the other. In the
stationary case the ensemble mean of 

€ 

Ui (ΔT)  produces a
usable estimate of the true mean of 

€ 

Ui (t) . In the
nonstationary case it doesn’t.

For this nonstationary case, let 

€ 

µ j be the average of

€ 

Uj(t) . If we again use (2) to define the random component in
this j-th block, that random component is also bogus because
the same 

€ 

µ j is being subtracted from the raw data at each
instant within the block whereas the true random part is
defined by subtracting the time-dependent mean from the raw
data. Finnigan et al. (2003) report the bogus nature of such an
average, stating that nonstationarities in the form of
“deterministic trends or low frequency components in the
[original] record are contained in” 

€ 

u j (t) .
And while the time average of this bogus random part is

zero, its expected value is not. That is, even though

€ 

Uj(t)−µ j = 0  for the j-th block, it doesn’t follow that

€ 

< Uj(t)−µ j >=< Uj (t) > −µ j = 0 , where < > denotes ensemble
mean, the reason being that the ensemble mean of 

€ 

Uj(t)  is
not a constant. This non-equality between time averaging and
ensemble averaging in the nonstationary case is what marks
the departure from the stationary case. It also makes it
impossible to assign meaningful physics to any related result.
In particular, the integral scale for the j-th block is not
necessarily zero; and, as in the stationary case, the resulting τ-
functional form of the autocovariance is questionable.
Specifically, in the nonstationary case, subtracting a Reynolds
average of raw data from the raw data does not produce the
exclusively zero ensemble mean random part of the original
data. For time averaging to be meaningful, it must produce
results equivalent to ensemble averaging. In short, we cannot
extract ‘meaningful’ physics by invoking incorrect
mathematics.

3. DYNAMICAL IMPLICATIONS

The immediate implication is that estimates of
autocovariances using standard block averaging are suspect.
Specifically, for stationary turbulence, the perpetual zero
integral scale feature suggests that the τ-functional form of

€ 

< u i (t − τ /2,ΔT)u i (t + τ /2,ΔT) >  does not equal the τ -
functional form of 

€ 

u i (t − τ /2,ΔT)u i (t + τ /2,ΔT). The same is
t r u e  f o r  c r o s s  c o v a r i a n c e s  s u c h  a s

€ 

u i (t − τ /2,ΔT)wi (t + τ /2,ΔT),

€ 

u i (t − τ /2,ΔT)u i
2 (t + τ /2,ΔT) ,  a n d

€ 

u i (t − τ /2,ΔT)pi (t + τ /2,ΔT) . That is, because the net area
under the curve of these types of cross-covariances is
perpetually zero, it doesn’t follow that the τ-functional form

€ 

< u i (t − τ /2,ΔT)wi (t + τ /2,ΔT) >  equals the τ-functional
form 

€ 

u i (t − τ /2,ΔT)wi (t + τ /2,ΔT), etc., thus making their
respective τ-functional forms equally suspect. Note that these
covariances are neither even nor odd functions of the lag.
Therefore, the zero net area under the curve for these cases
has a somewhat different physical meaning. In the
autocovariance case, block averaging leads to an
autocovariance that appears as the blue line in Figure 1 when,
in fact, the true autocovariance may appear as the red line in
Figure 1. The differences between the two are clear.

These differences combine to produce spectral
information whose frequency bandwidth, content, distribution
and domain differ. Thus, in spite of stationarity, an FFT
analysis of 

€ 

u i (t,ΔT)  will not produce the requisite spectral
characteristics of the turbulence in the i-th block. Moreover,
the spectrum of the blue-line autocovariance in Figure 1 is
zero at frequency zero while the spectrum of the red line
autocovariance in Figure 1 is not. Taylor (1921) says that the
type of curve depicted by the blue line “might be due to some
sort of regularity in the eddies of which the turbulent motion
consists.” It appears that the “regularity” is a consequence of
the tacit assumption that mean and variance scale in the same
way. The two curves can be made to coincide only at lag zero
by normalizing each with respect to its own variance. For
nonstationary turbulence, block averaging over user-defined
windows is inapplicable altogether.



The zero integral scale result is ‘generic’ in the sense that
it has nothing to do with turbulence per se. Thus, to further
investigate the turbulence implications of a zero integral scale
we need to examine the dynamical evolution of single-point,
two-time correlations consistent with the Navier-Stokes
equation. Accordingly, for the vertical velocity W we write

€ 

∂W
∂t

+
∂W2

∂z
+
1
ρ
∂P
∂z

= 0 . (6)

The variables P (pressure) and W are taken to be measured at
a fixed point in the boundary layer defined by the coordinates
X (longitudinal), Y (transverse), and Z (vertical), and the total
flow is taken to be homogeneous in x and y but
inhomogeneous in z. We also assume high Reynolds number
and neutral stratification for demonstration purposes and,
therefore, ignore the viscous and gravitational terms normally
present in (6).
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 Figure 1. Autocovariances for stationary turbulence. The red
curve is a possible autocovariance as would be determined by
ensemble averaging. The net area under this curve is not zero.
The blue curve is the autocovariance as determined by
Reynolds averaging. The net area under this curve is zero.
The blue-line autocovariance “might be due to some sort of
regularity in the eddies of which the turbulent motion
consists” (cf. Taylor 1921).

Letting 

€ 

W =<W > +w ≈ w  and 

€ 

P =< P > +p  in (6)
produces

€ 

∂w
∂t

+
∂w2

∂z
+
1
ρ
∂< P >
∂z

+
1
ρ
∂p
∂z

= 0 . (7)

Taking the ensemble average of (7) and subtracting this
average from the original leaves

€ 

∂w
∂t

+
∂w2

∂z
+
1
ρ
∂p
∂z

=<
∂w2

∂z
>=

∂σ 2

∂z
, (8)

where σ2=<w2>. Note that the ensemble average of (8) is
zero, as it should be. Evaluating (8) at time t1 and multiplying
by w(t2) results in
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w(t2 )
∂w(t1)
∂t1

+w(t2 )
∂[w2 (t1)−σ

2 (t1)]
∂z

+

w(t2 )
ρ

∂p(t1)
∂z

= 0.

(9)

Changing variables according to t=(t1+t2)/2 and τ= t2-t1

converts (9) into
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(10)

Similarly, evaluating (8) at t2 and multiplying by w(t1) results
in
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2
)

ρ

∂p(t +
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2
)

∂z
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(11)

Adding (10) and (11) and ensemble averaging that result
yields

€ 

1
2
∂C(t,τ)
∂t

+ F(t,τ) +G(t,τ) = 0 , (12)

where

€ 

C(t,τ) =< w(t − τ
2
)w(t +

τ
2
) > , (13)
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F(t,τ) =< w(t − τ
2
)
∂w(t +

τ
2
)

∂τ
−w(t +

τ
2
)
∂w(t − τ

2
)

∂τ
> , (14)

and
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G(t,τ) =< w(t +
τ
2
)
∂w2(t − τ

2
)

∂z
+

w(t − τ
2
)
∂w2 (t +

τ
2
)

∂z
> +

1
ρ

< w(t +
τ
2
)
∂p(t − τ

2
)

∂z
+w(t − τ

2
)
∂p(t +

τ
2
)

∂z
> .

(15)

Equation (12) requires that the time dependence of the
autocovariance be balanced by a variety of terms, viz. those
defined by (14) and (15). Accordingly, we examined a
sequence of CASES99 (Poulos et al. 2002) autocovariances
for which we determined the mean consistent with (1). These
are shown in Figure 2. The curves show 5-min averaged
autocovariances of vertical velocity recorded at the 5-m level
on the night of 18 October 1999 between 1:50 and 2:05 a.m.
(UTC).

Figure 2. Sequence of three autocovariances for CASES99
data (vertical velocity only). These autocovariances were
determined by block averaging over the indicated time
intervals.

Cursory examination of these three curves establishes
that there is time dependence in their shapes from one time
block to the next and also in the variances (autocovariance
values at zero lag). One might even be tempted to conclude
that when properly normalized these curves could be made to
collapse into a single curve (not shown), resulting in a
contention of self-similarity. However, all autocovariances
that cross the abscissa only once are self-similar to some
degree, regardless of the vertical level z at which they are
determined (suggesting homogeneity). Thus, any self-
similarity in such analyses is spurious because the method by
which it emerges is biased toward that result (cf. Treviño and
Andreas 1996). In short, self-similarity observed in Reynolds

averages of turbulence is an artifact of the averaging process
and not a property of the flow. This result likewise biases
interpretations of the terms described by (14) and (15).

An added caveat is that Reynolds averaging produces
curves similar to Cww(τ) for longitudinal and transverse
velocities as well. This similarity creates the impression that
Cuu(τ) and Cvv(τ) are like those of the blue line in Figure 1.
Generalization to isotropy of the underlying flow thus seems
warranted but is completely in error for boundary-layer
turbulence.

Lastly, we invoke the effects of the zero integral scale
constraint by first noting that the expressions (13) –(15) are
all even functions of the lag and then integrating (12) in τ
from -∞ to +∞ to produce
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∂(σ 2Λ)
∂t

+ 2 F(t,τ)dτ + 2
0

∞

∫ G(t,τ)dτ =
0

∞

∫ 0, (16)

where 

€ 

C(t,τ)d
−∞

∞

∫ τ = 2σ 2Λ . The result (16) stipulates that the

time evolutions of the variance and the integral scale are
intertwined and defined by terms of extreme complexity. As
long as we are using ensemble means to represent each of the
terms in (12), (16) is legitimate. However, when we estimate
all terms in (12) by time averaging over a sequence of
stationary time blocks, then all terms in (16) become zero (cf.
(3)-(5)). That is, when we use the same interval ∆T to
estimate both means and variances, there is no dynamics. This
result, again, is due to the ‘suspect’ τ-functional forms of all
the integrands in (16).

In other words, setting Λ=0 in (16), as would be the case
when the turbulence is stationary over each block, destroys
not only its own time evolution but that of all the other terms,
including the variance. In short, we cannot have a time
evolution in the variance without a time evolution in the
integral scale. Thus, approximating the time evolution of the
variance by block averaging, even when it’s applicable, does
not depict the true dynamical behavior of the flow—there is
no concomitant integral scale variation. Imposing zero
integral scale on (16) is equivalent to setting to zero the
energy level of each time block. Block averaging is thus
unsuccessful at approximating how the variance changes with
respect to time, as required by the Navier-Stokes equation.

4. DISCUSSION

Dynamics is critical for questions of nonstationary
turbulence and it is natural to begin with simple dynamics that
we can understand. However, attempts to approximate by
block averaging the time evolution of the large-scale features
of turbulence in terms of superposition of the features of each
block requires that the randomness of each block be
compatible with the randomness of the turbulence as a whole.
An integral scale computed to be identically zero for each
block leads, as deduced above, to a trivial time evolution for
the turbulence record as a whole. Block averaging is
motivated by the lure of easy computation and the belief that
nonstationary turbulence can be approximated as a
concatenation of stationary segments. The manner, though, in
which it is implemented in practice, viz. constant-width
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segments and the same segments for both mean and variance
computation, is inappropriate, even when coupling it with
what we believe to be ‘correct’ physics. Formulation of
correct physics must be preceded by a correct mathematical
description of the behavior. The principles quantifying the
behavior of turbulence are the principles of probability,
whereas the principles of Reynolds averaging are the
principles of certainty.

What this means, of course, is that if we were to analyze
several hours of data over successive, say, 5-min time blocks
and for the entire data set obtain the variance sequence σ(t0),
σ(t0+5-min), σ(t0+10-min),…, where t0 is some initial time,
the fact that we’ve used traditional block averaging to obtain
each of these variances automatically invalidates not only
their magnitudes but their time evolution as well, even if the
raw data were found to be stationary over each block. The
requisite sequence is the sequence of pairs {σ(t0),Λ(t0)},
{σ(t0+5-min),Λ(t0+5-min)}, {σ(t0+10-min),Λ(t0+10-min)},…
Such a sequence is more characteristic of turbulence
dynamical behavior than is the sequence {σ(t0),0}, {σ(t0+5-
min),0}, {σ(t0+10-min),0},… Since both the variance and the
integral scale emerge from the same function, viz. the
autocovariance, the fact that the integral scale is zero casts
doubt on the validity of the related magnitude of the variance.
Averaging raw data over a succession of 5-min intervals is, in
and of itself, tenuous but acceptable. Averaging the random
part over the same 5-min intervals is what generates the
incompatibility.

Even allowing the magnitude of ∆T to vary from one
block to the next, the so-called variable interval time
averaging (VITA) method (Gupta 1996), does not avoid the
zero integral scale feature. Zero integral scale emerges from
using the same time interval to estimate both mean and
variance of stationary turbulence. Since for stationary
turbulence Reynolds averaging produces autocovariances with
zero integral scale, it is untenable. For nonstationary
turbulence it is self-defeating. We cannot obtain a meaningful
description of any turbulence behavior if we invoke the same
window to estimate both the mean and the variance. Each
requires estimation over its own time scale.

5. CONCLUDING REMARKS

de Waele et al. (2002) state that applying the standard
definition of the integral scale “leads to results that are
difficult to interpret.” Actually, the results are not difficult to
interpret if we are willing to accept the fact that the principles
of traditional Reynolds averaging are flawed. In particular,
using the same ∆T to obtain mean and variance estimates will,
as shown above, always lead to autocovariances that have
zero integral scale.

de Waele et al. (2002) suggest using a truncated
autocovariance, a procedure consistent with the principle
(Papoulis 1965, p. 330) that defining a safe averaging interval
for the mean requires knowledge of the autocovariance while
defining a safe averaging interval for the autocovariance
requires knowledge of fourth-order moments. de Waele et al.
(2002) caution, though, that their approach is a “highly
arbitrary…subjective business.” Sreenivasan et al. (1978) also
report that knowing the higher-order moments is necessary for
establishing record length requirements.

We, on the other hand, suggest the time-dependent
memory method (TDMM) (Treviño and Andreas 2000).
TDMM is a patented real time algorithm (U. S. Patent No.
6,442,506) that uses turbulence properties, viz. the numerical
accuracy of the measurements and a turbulence time scale
designated the memory, to define the optimal time-dependent
averaging intervals for mean and variance estimates
respectively. These intervals are typically not the same. Thus,
consistent with theory, it allows for independent time
variations in both variance and integral scale and is
compatible with the fact that we cannot obtain robust
estimates of nonstationary turbulence statistics using constant-
width averaging intervals.

Consistent with inhomogeneity, TDMM also provides
for potentially different averaging scales for different
directions. It is also devoid of any “arbitrary” or “subjective”
components. In particular, it avoids the perpetual zero integral
scale feature and accordingly produces viable time evolutions
for both the variance and the integral scale. A utilitarian
description of TDMM is ‘how to window nonstationary
turbulence’.

TDMM generates averages consistent with truths about
turbulence rather than with agreements among the community
of researchers on how to analyze and discuss it. It is
‘economic’ in the sense that it uses the optimum amount of
raw data to estimate mean and variance, and removes the user
from the window-width decision-making process. It also
allows for realistic and objective judgments to be made about
the statistical structure of the turbulence being analyzed;
particularly, the presence or non-presence of self-similarity.
Last, it does not narrow the possibilities of applying the
theoretical results to practical scenarios. Block averaging
doesn’t produce acceptable estimates of autocovariances
under any circumstances, even for stationary data; TDMM
does.

TDMM answers the question: If we want to average
mean and variance over different time intervals how do we do
it in an optimal way? The results reported here answer the
questions: Why would we want to do that in the first place?
What’s wrong with Reynolds averaging? What do we get
from TDMM that we don’t get from block averaging? The
present results are compatible with the fact that mean and
variance represent different degrees of freedom and should
therefore each be averaged over their own time scales (cf.
Papoulis 1965, p.330).

In closing, we add that the community sometimes uses a
quantity proportional to 

€ 

z /U  as a measure of integral scale,
ostensibly as a means of eluding the perils of the Reynolds
averaging. There are two problems with this formulation.
First, it does not eliminate the flaw in question. That is, for
stationary turbulence, autocovariances with zero net area
under the curve still manifest. In other words, the problem at
hand is not how we define integral scale; the problem is how
we average turbulence time series. As long as we continue to
use the same interval ∆T to estimate both mean and variance,
the zero integral scale conflict with dynamical theory will
persist.

Second, when the turbulence is nonstationary, the
averaging operation invoked becomes a contentious issue.
Specifically, for a specified time t, the averaging operators



€ 

UR (t,ΔT) =
1
ΔT

U(ζ)d
t

t+ΔT
∫ ζ (17)

€ 

UC(t,ΔT) =
1
ΔT

U(ζ)d
t−ΔT/2

t+ΔT/2
∫ ζ (18)

€ 

UL (t,ΔT) =
1
ΔT

U(ζ)d
t−ΔT

t
∫ ζ (19)

provide unequal estimates of the ensemble mean at time t. In
stationary turbulence they produce roughly equivalent results
(within statistical scatter). But, in nonstationary turbulence, a
decision has to be made (by the researcher) as to which of the
three averaging operations produces the most ‘representative’
estimate of the true mean at time t. Finnigan et al. (2003) state
that “the particular averaging operation that is applied to the
instantaneous flow field determines what part of the velocity
will be treated as ‘mean flow’ and what as turbulence.” We
add here that the particular user-defined window width also
determines what part of the velocity will be treated as mean
flow and what as turbulence. It is obvious that, in general,

€ 

< UL (t,ΔT) >≠< UC (t,ΔT) >≠< UR (t,ΔT) >  and moreover
tha t  the  au tocovar iance  o r  spec t rum of

€ 

uL (t,ΔT) = U(t)−UL (t,ΔT), nor its time evolution, does not
equal that of 

€ 

uC (t,ΔT) = U(t)−UC (t,ΔT) or  of

€ 

uR (t,ΔT) = U(t)−UR (t,ΔT).
We must always be cognizant of the fact that when using

any algorithm to extract statistical information from
turbulence, the information extracted is a convolution of the
properties of the turbulence and the properties of the
algorithm. In effect, every experimentalist faces a similar
question: What effect does the instrument used to measure a
phenomenon have on the measurements themselves? Just as
an object appears different under normal light, X-rays light,
and ultraviolet light, “what we observe is not nature itself but
nature exposed to our method of questioning” (Heisenberg
1958, p. 58).
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