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1. INTRODUCTION 
 
We present a method of inferring the temperature 
structure parameter (CT2) from sonic anemometer 
data using a Bayesian analysis.  Specifically, we 
first create a time series of temperature 
increments from the original sonic temperature 
time series and use the expected form of the 
temperature structure function to deduce the 
correlations between the increments in the series.  
By assuming that the increments are distributed 
according to a multivariate Gaussian distribution, 
the conditional probability for the increment time 
series for a given CT2 can be deduced.  We then 
used Bayes' rule to find the conditional probability 
for CT2 given the observed increment time series 
and take the most probable value of CT2 as our 
measurement from the sonic anemometer data.  
Finally, we show a comparison of these CT2 
values with those simultaneously obtained from a 
laser scintillometer. 
 
2. THE METHOD 
 
We wish to estimate the value of CT2 for a given 
sequence of n sonic temperature measurements 

[ ]1 2, , , nT T T T=
�

�  equally spaced in time with 

intervals δ .  We assume that the wind, U, is 
strong enough so that Taylor’s hypothesis holds, 
and constant enough so that the measurements 
are equally spaced horizontally d Uδ= .  We also 
assume that the temperature measurements have 
a negligible amount of noise.  From this, we 
construct a time series of successive temperature 
increments [ ]1 1 2 1 1, ,m m mT T T T+ + +∆ = − −

�
� , where 

( )mceil /m l d=  is the minimum acceptable 

separation between measurements and 
30 cmml =  is the approximate size of the sonic 

anemometer. 
 
We also ignore the effect of the outer scale and 
assume that the structure function has the form, 
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 ( )2 2 2 3 2 3
1 1m TT T C d m+ − =  (1) 

This means that the variance of each temperature 
increment is 

 2 2 2 3 2 3
0i TC d m C∆ = =  (2) 

where we have assumed that the increments have 
zero mean.  The structure function at a lag of 2dm 
is simply the average of the square of the sum of 
two successive increments, 

 ( )2 2 3
1 0 1 02 2 2i i C C C+∆ + ∆ = + =  (3) 

where 1 1i iC += ∆ ∆  is the covariance of two 

successive increments, and is equal to 

 ( )1 3
1 0 02 1 0.2063C C C−= − = − . (4) 

Knowing 0C  and 1C , and using the formula for the 

structure function at a lag of 3dm, we can deduce 

2C , and then 3C  and so on until we have as many 

terms of the covariance function as for the 
temperature increment vector, ∆

�
. 

 
To find the conditional probability density, 

( )2| TCρ ∆
�

, it is convenient to use the increment 

correlations, 0i iR C C=  and to define a 

correlation matrix. 
 i j i jR −=R . (5) 

From these we can obtain the multivariate 
Gaussian conditional probability, 

 ( ) ( )
( )

2 2 3 2 3

2

2 1 22 2 3 2 3

exp 2
|
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T N

T

B C m d
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C m d
ρ

π

−
∆ =

� �� �

R

�
 (6) 

where R  is the determinant of the correlation 

matrix and B represents, 

 1B −′= ∆ ∆R
	 	

 (7) 

where 1−R  is the matrix inverse of R . 
 

To determine ( )2 |TCρ ∆
�

, we must choose an a 

priori probability distribution, 

 ( )2
2

1
T

T

C
C

ρ ∝  (8) 



It has the property of being flat in the logarithm of 
CT2, which is a desirable property given its 
dynamic range.  Now, using Bayes’ rule, we finally 
obtain 
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for which the most probable value of CT2 is 

 ( )
2

2 3 2 32T

B
C

N m d
=

+

�

, (10) 

and which we will take as our estimate. 
 
3. MEASUREMENTS 
 
Now we are ready to compare the CT2 values 
from our sonic anemometer data to those from a 
laser scintillometer.  Our METEK sonic 
anemometer was placed over a flat test field 2.5 m 
Above Ground (AG) and took data for most of May 
and the beginning of June in 2003.  A SINTEC 
SLS20 laser scintillometer accompanied the 
anemometer for most of that period.  The SLS20 
obtained estimates of the refractive index structure 
parameter (Cn2) at a wavelength of 670 nm over a 
path 185 m long at 1.6 m AG.  However, due to 
several malfunctions of the SLS20 during the June 
period, only the May period is considered. 
 
For a relatively dry atmosphere Cn2 is proportional 
to CT2, such that the SLS20 can serve as a norm 
for our CT2 estimates.  The relationship is 
approximately, 

 
4

2 2
2 2T n

T
C C

A P
≈  (11) 

where 80A = , P is the pressure in millibars, and 
T is the average air temperature in Kelvin.  
Furthermore, the temperature in Eq (11) is the 
actual temperature whereas the anemometer 
measures the sonic temperature, Ts, which 
depends on the specific humidity.  We will assume 
that the atmosphere is dry enough so that these 
discrepancies are negligible.  Finally, using an 
eddy-correlation method on the sonic anemometer 
wind and temperature data, we estimate the 
characteristic velocity scale, *u , and temperature 

scale, *T , of the surface layer.  These scales allow 
us to perform a height adjustment of the SLS20 
data using Monin-Obukhov similarity theory. 
 
Time series of the CT2 estimates using the height-
adjusted SLS20 Cn2 data from Eq (11), and the 
sonic anemometer data from the Bayesian 

method, are shown in Fig 1.  It shows that the 
Bayesian estimates follow the scintillometer values 
reasonably well, except for a slight but persistent 
underestimation around midday and a persistent 
overestimation at night.  The scatter plot in Fig 2 
reveals this underestimation to be more or less 
constant along with some significant dispersion.  
The plot in Fig 2 also has a flat bottom.  In other 
words, as the SLS20 estimates become smaller; 
less than 0.001, the Bayesian estimates reach a 
floor between 0.001 and 0.002.  This may be due 
to the presence of noise in the sonic temperature, 
which dominates the temperature increments as 
CT2 becomes very small.  Noise and other 
possible effects will be discussed in the next 
section. 
 
4. DISCUSSION 
 
As mentioned previously, noise in the sonic 
temperature measurements can affect the CT2 
estimates.  Fortunately, its effect can be taken into 

account if we know its variance, 2

Tσ .  Instead of 
using the previously derived increment covariance 
vector, C

�
, we use a modified vector that includes 

the noise contribution, 

 C C′ = + Γ
� � �

 (12) 

where 2

0 2 TσΓ = , 2

1 TσΓ = − , and it is zero 

everywhere else, and use C′
�

 in the multivariate 
Gaussian distribution.  Unfortunately, including 
noise makes a simple analytic solution impossible 
and requires some kind of numerical procedure. 
 
Another factor that may affect the results is the 
presence of an outer scale.  As mentioned 
previously, the noiseless increment covariance 
vector was deduced from a simple power-law 
structure function.  However, if we have a good 
idea of the outer scale, Lo, (perhaps proportional to 
the height AG) and the functional form of the 
structure function that includes it, nothing prevents 
us from deducing a noiseless increment 
covariance vector that depends on it, ( )oC L

�
.  If 

Lo and 2

Tσ  are known, then we can evaluate 

( )2 2,| ,T T oC Lρ σ∆
�

.  On the other hand, if we only 

know these additional factors approximately, 

through a priori distributions, ( )2

Tρ σ  and ( )oLρ , 

then we can deduce ( )2 2, , |T T oC Lρ σ ∆
�

, requiring 

us to find the three most probable quantities. 
 



Finally, there may be a problem with our 
assumption of a multivariate Gaussian distribution.  
Turbulent statistics are generally not Gaussian; 
however, the multivariate Gaussian distribution is 
a maximum entropy distribution, i.e. it is the flattest 
and broadest distribution possible that conforms to 
the first and second order statistics of the 
temperature increments.  While there is no formal 
proof, experience has shown that Bayesian 
inference using such distributions tends to be 
robust with respect to such discrepancies (Box 
and Tiao, 1973). 
 
5. CONCLUSIONS 
 
To the best of the authors’ knowledge, a Bayesian 
method for estimating CT2 from sonic 
anemometer data has been formulated for the first 
time in this work.  It allows the possibility of using 
the power and flexibility of the Bayesian method to 
the problem of estimating CT2 in the surface layer.  
For instance, if there are other instruments present 
that give us some knowledge of what CT2 should 
be, then this knowledge may be incorporated into 
our method by using it as the a priori distribution 

( )2

TCρ  from which we derive the a posteriori 

distribution ( )2

TCρ ∆
�

.  In this way, we can obtain 

a CT2 estimate that combines all of our knowledge 
about it.  Furthermore, the a posteriori distribution 
not only allows us to find a single representative 
value, such as the mode, mean or median, but 
also to find some kind of error estimate on that 
value, such as the standard deviation or a 
confidence interval. 
 
Although the results from the Bayesian method 
follow the SLS20 estimates reasonably well, there 
is nevertheless a great deal of dispersion and a 
slight offset.  More work remains to make this 
method fully mature by including such factors as 
the noise and the outer scale.  This will 
undoubtedly make the procedure more numerical; 
however, it is the only way to obtain a 
comprehensive Bayesian method for data analysis 
in the atmospheric surface layer. 
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Figure 1.  Time series of the SLS20 (blue) and the sonic Bayesian (red) CT2 estimates for a period in May 2003. 
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Figure 2. A scatter plot of the sonic Bayesian versus the SLS20 scintillometer CT2 estimates. 
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