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1. INTRODUCTION

Most current numerical methods for predicting sound
propagation outdoors, such as the fast �eld program
(FFP) and parabolic equation (PE), are based on approx-
imations to the full wave equation that hinder, or even
do not allow, simulating complex propagaton phenomena
such as dynamic scattering by atmospheric �elds, mov-
ing source distributions, and re�ections from trees and
buildings. [The reader may refer to Attenborough et al.
(1995) and Salomons (2001) for detailed discussions of
the FFP and PE methods.] In contrast, these propaga-
tion phenomena can all be readily handled with �nite-
difference, time-domain (FDTD) techniques. Recent pa-
pers by Blumrich and Heimann (2002) and Salomons
et al. (2002) present 2D FDTD calculations for the at-
mosphere that include sound-blocking barriers in combi-
nation with wind and turbulence. Liu and Moran (2002)
demonstrated 3D FDTD simulations of propagation in a
nonmoving atmosphere with a barrier and dense stand of
trees. The main drawback with FDTD, which has so far
prevented more widespread use in outdoor sound prop-
agation calculations, is that it is very computationally in-
tensive. As computational capabilities continue to rapidly
increase, though, it seems inevitable that FDTD will as-
sume a prominent role in simulating outdoor sound prop-
agation. Full utilization of FDTD will require realistic, high-
resolution atmospheric wind and temperature �elds as
input to capture the dynamic atmospheric structure and
random scattering processes that drive acoustic signal
variability and coherence.

Atmospheric acoustic FDTD simulations have many
practical modeling applications, including noise control in
the vicinity of highway barriers and urban structures, at-
mospheric and terrain effects on outdoor acoustic sur-
veillance sensors, propagation of explosions and sonic
booms through the troposphere and stratosphere, and re-
mote sensing systems such as sodar that are based on
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scattering of sound.
In this paper, we discuss FDTD simulations of sound

propagation in the atmosphere and idealized turbulent
media. Section 2 describes the time-domain equations
that are used to propagate the sound �elds and overviews
some of the numerical issues involved in their implemen-
tation. In Section 3, FDTD is performed with input �elds
generated by a large-eddy simulation (LES). Section 4
describes FDTD calculations of propagation through tur-
bulence produced by a kinematic method, which is shown
to be particularly useful for testing theories of wave scat-
tering by turbulence.

2. ACOUSTIC FDTD IN A MOVING MEDIUM

2.1 Coupled Equation Set

Most currently used techniques for calculating sound
propagation in the atmosphere (such as the FFP and PE,
mentioned in the Introduction) are based on solving the
full wave equation or its parabolic approximation. The
wave equation is a second-order partial differential equa-
tion in both time and space. FDTD techniques, how-
ever, are most readily applied to �rst-order partial dif-
ferential equations. Furthermore, most solutions of the
wave equation have been based on one-way approxima-
tions, in which the energy is propagated in only one di-
rection, and on �effective sound-speed� approximations,
in which the sound speed is taken to be the actual sound
speed plus the component of the wind velocity in the di-
rection of propagation. The wave equation in a moving
medium is considerably more complicated than in a sta-
tionary medium (Ostashev, 1997). The switch to �rst-
order equations facilitates correct handling of the wind
velocity �eld. The following coupled, �rst-order equations
for the acoustic pressure p and acoustic particle velocity
w involve no one-way or effective sound-speed approxi-
mations, and are therefore appropriate starting point for
accurate FDTD sound propagation calculations in a mov-
ing atmosphere (Ostashev et al., 2004):
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Here, � is medium density, c is the adiabatic speed of
sound, and v is the wind velocity. The quantities F and
Q represent sources: the former is a force acting on the
medium, whereas the latter is a mass source. Bold sym-
bols represent vectors. Equations (1) and (2) were de-
rived from the full �uid dynamical equations, subject to
the following assumptions: (1) the sound wave is a small
perturbation to the background state of the medium, (2)
the propagation medium is an incompressible gas (i.e.,
r � v = 0), (3) the gradient of the background pressure
may be neglected, and (4) the Coriolis force may be ne-
glected. These four assumptions are quite typical and
reasonable for aeroacoustics. The third may be consid-
ered a distinguishing property between sound and grav-
ity waves. An FDTD code based on (1) and (2) would
be more general and accurate than most current sound
propagation formulations, despite the fairly simple ap-
pearance of the differential equations. Numerical issues
aside, the density, sound speed, and wind velocity �elds
speci�ed in (1) and (2) can be arbitrary functions of space
and time.

2.2 Computational Considerations

Typically, �nite-difference solutions for wave propa-
gation in a nonmoving medium use a grid that is stag-
gered in space and time (Yee, 1966; Botteldooren,
1994). Each acoustic particle velocity component is ex-
plicitly calculated on spatial grid nodes shifted by one-half
of the internode spacing, relative to the explicit acoustic
pressure nodes, in the direction of the velocity compo-
nent. The particle velocities and pressures are advanced
on alternating time steps. It happens, however, that this
�leapfrog� methodology of marching the solution in time
cannot be applied directly to Eqs. (1) and (2). Evaluation
of the advective terms on the right-hand sides of these
equations requires knowledge of the pressure and parti-
cle velocity �elds at time steps where they are not explic-
itly available. Therefore, we have developed alternative
approaches based on unstaggered temporal grids (Osta-
shev et al., 2004) and staggered temporal grids spanning
multiple time steps (Symons et al., 2003). The latter ap-
proach is shown schematically in Figures 1 and 2. The
�nite-difference stencil shown in these �gures involves
fully centered �nite differences, and is second-order in
time and fourth-order in space. As discussed in Wilson
and Liu (2004), this approach and several others can yield
highly accurate results, although some ef�ciency in mem-
ory usage and/or calculation time is lost in comparison to
the customary leapfrog solution for a nonmoving medium.

The size and dimensions of the computational do-
main in an acoustic FDTD simulation depend on the prop-
agation geometry of interest and the memory available.
Arti�cial sound absorbing layers are placed around the
sides and corners of the domain to prevent unwanted nu-
merical re�ections. The lower surface is normally taken
as a rigid plate, although more sophisticated models with

+x

+t

tj-1

tj+1

tj

∆∆∆∆t

xi+1xi-1 xi

∆∆∆∆x

xi+2xi-2

= known p(x,t)

= unknown p(x,t)
= known wx(x,t)

X

X = pivot at (xi , tj)

FIG. 1: Staggered �nite-diference stencil for updating
the acoustic pressure solution in a moving medium. (For
simplicity, the stencil is shown with one spatial dimen-
sion.)

absorption are under development. The spacing between
grid points in acoustic FDTD is driven by the smallest
acoustic wavelength of interest. For fourth-order spatial
�nite-differencing, a typical grid spacing would be 1/8 of
the wavelength. As an example of the memory require-
ments, consider a simulation in which a source emits fre-
quencies at 250 Hz and lower. For a sound speed of
340 ms�1, the minimum wavelength is 340=250 = 1:36
m, and the grid spacing is therefore 0:17 m. Assuming
the dimensions of the computational domain are 500 m in
each horizontal direction and 50 m in the vertical, about
2:5 � 109 grid nodes are required. Such intensive com-
putational problems can only be tackled on large, parallel
processing computers.

3. ACOUSTIC SIMULATIONS WITH DYNAMIC
ATMOSPHERIC MODELS

The time-domain nature of acoustic FDTD makes it a
natural approach for coupling with dynamic atmospheric
models such as numerical weather predictions (NWP)
and atmospheric boundary-layer (ABL) large-eddy sim-
ulations (LES). The spatial and temporal resolution of
the acoustic FDTD will typically be �ner than the LES
(since for physical reasons the LES domain normally en-
compasses the entire ABL, whereas the acoustic FDTD
need not) and therefore the LES �elds must interpolated
in some fashion to the acoustic grid. In this section, we
provide examples of FDTD simulations of sound propa-
gating through atmospheric turbulence �elds generated
by LES.

The LES we use is a parallelized implementation of
the physical models and code described in Sullivan et al.
(1994) and Sullivan et al. (1996). Two stability cases are
considered here. The �rst is for a neutral ABL (Figure 3)
and the second for a buoyantly unstable ABL (Figure 4).
Although only the vertical velocity component is shown in
these �gures, all three velocity components and tempera-
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FIG. 2: Staggered �nite-diference stencil for updat-
ing the acoustic particle velocity solution in a moving
medium. (For simplicity, the stencil is shown with one
spatial dimension.)

ture were used as input to the acoustic FDTD calculation.
The acoustic calculation was performed with 901 �

901 � 603 grid nodes spaced at 1 m. The time step was
0:25 ms and the solution was advanced over 16001 time
steps. Execution required 10 hours on a cluster built from
100 Compaq ES45 processors. The sound source was
a 20-Hz, mono-frequency, mass-type source. The middle
panels in Figures 3 and 4 show snapshots of the calcu-
lated sound �elds. Distortions to the propagating wave-
fronts are not easily discernable in those images. For
each case we also propagated sound �elds through hor-
izontally averaged LES �elds (i.e., the mean vertical pro-
�les only). The difference between the sound �elds, with
and without the horizontal LES variability, is shown in the
lower panels of Figures 3 and 4. The distortions to wave-
front shape and amplitude are easily discernable in these
difference images. Such distortions impact the ability of
acoustical arrays to accurately estimate the bearings of a
source and could also potentially be used for atmospheric
sensing.

4. ACOUSTIC SIMULATIONS WITH KINEMATIC
TURBULENCE

Kinematic turbulence refers here to synthesized ran-
dom �elds that obey a prescribed set of statistics. Usu-
ally, the prescribed statistic is a spectrum for the turbu-
lence. Since kinematic turbulence generation does not
involve solving the Navier-Stokes equations, it does not
realistically capture turbulent dynamics as a simulation
such as LES would. However, there are two proper-
ties of kinematic turbulence that we regard as particularly
useful when it is used in conjunction with the acoustic
FDTD. First, because random �elds can be synthesized
to have a prescribed spectrum, it becomes possible to
rigorously test theories for wave propagation through tur-
bulence. Tightly controlled numerical experiments can
be conducted that are not contaminated by complicat-

FIG. 3: Top: Vertical wind �eld from an LES for a neu-
tral ABL (zi=Lo = �1). (Only a partial cross section
of the LES is shown.) Middle: Acoustic FDTD calcula-
tion for an explosive-type source propagating through the
neutral LES �elds. Bottom: Difference between sound
�eld calculated with turbulence (LES �elds) and without
turbulence (horizontally averaged LES �elds).

ing factors such as refraction, ground re�ections, and
turbulent anisotropy, which are inevitably present during
experiments performed in the atmosphere or a labora-
tory. The effects of these complicating factors can be
explored in controlled combinations, and their relative im-
portance thereby ascertained. Second, it is possible to
ef�ciently parallelize the generation of the kinematic tur-
bulence, thereby allowing turbulence �elds to be synthe-
sized quickly and at a much higher resolution than possi-



FIG. 4: Same as Figure 3, except for a buoyantly un-
stable ABL (zi=Lo = �6).

ble with current LES.
Our kinematic turbulence generation method is

based on quasi-wavelets (QWs) (Goedecke et al., 2004;
Wilson et al., 2004). The QWs are similar to custom-
ary wavelets in that they are localized in space and self-
similar in scale. However, their positions and orientations
are random. The velocity �eld associated with each QW
is given by

v�n(r) = 
�n � (r� b�n)
�
���1@f=@�

�
; (3)

where � is an index for the size class, n is a particular
QW within that size class, 
�n is the angular velocity,
b�n is the center of the QW, r is the location in space,
� � (r� b�n) =a�, and a� is the size of the QW. The func-

tion f (�) is the QW parent function, for which in this paper
we use a simple Gaussian:

f (�) = f (0) exp
�
��2

�
; (4)

The parameters of the QW distribution, including
the constant f (0), the number and spacing of the size
classes, the angular velocities, and the number density
of the QWs, can be chosen in a way that reproduces the
Kolmogorov inertial subrange (Goedecke et al., 2004;
Wilson et al., 2004). An advantage of using QWs, in
comparison to more common Fourier spectral methods, is
that the QWs are localized in space. This allows the QW
generation to be accomplished with a spatial domain de-
composition implemented on a parallel-processing com-
puter. The parallelization is very straight forward and ef-
�cient, since each processor needs only to compute the
�elds associated with the eddies contained within its sub-
domain. Some QWs, particularly large ones, will span
the domains of multiple processors. However, the num-
ber of large, processor-spanning QWs is small since the
turbulence cascade naturally results in eddies being most
numerous at the inner scale of the kinematic turbulence.

Figure 5 shows some example snapshots of kine-
matic turbulence synthesized by the QW method. The
outer scale (a1) for these kinematic �elds is 4 m, and the
inner scale (aN ) is 0:5 m. The turbulent kinetic energy
dissipation rate was set to � =10 m2s�3. This rather high
value was chosen to produce pronounced scattering ef-
fects. A total of 4 million QWs were generated. Shown
are cross sections through fully 3D kinematic turbulence.
These realizations were generated in a cube domain 325
m on a side at a resolution of 0:5, using 216 processors
on an IBM SP3 computer. Figure 6 compares the spectra
of the synthesized kinematic turbulence to these theoret-
ical forms. The synthesized and theoretical spectra are
essentially identical.

Since the synthesized kinematic turbulence �elds re-
produce turbulence spectra accurately, and the FDTD
method propagates wave�elds through the turbulence
with no approximations beyond the temporal/spatial dis-
cretization, these two capabilities when taken together
provide an outstanding capability for exploring the validity
of theoretical treatments of wave scattering by turbulence.
The basic theories in widespread use today were derived,
for the most part, in the 1970's. Ishimaru (1978) provides
a detailed discussion. More recently, Ostashev (1997)
rigorously treated the case of sound-wave propagation
through a �uctuating velocity �eld. As mentioned at the
beginning of this section, it is very dif�cult to ascertain
the limits of applicability of these theories because real-
world turbulence (in the atmosphere or laboratory) rarely
satis�es all of the assumptions made in their derivation.

To address this issue, we performed an acoustic
FDTD calculation of propagation through the �elds shown
in Figure 5. The goal of this particular test was to ex-
amine the spatial coherence of the acoustic wave�eld.
Wave�eld coherence is degraded by random perturba-
tions in the propagating wavefronts, which result from



FIG. 5: Kinematic turbulence synthesized by the quasi-
wavelet method. Shown is a cross section in the xz-plane
through the �x velocity component. Color scale is in m/s.
These �elds are used as input for an acoutic FDTD cal-
culation with the source at (0; 0; 0) m.

spatial variability on the propagation speed and focus-
ing/defocusing by the turbulence. As a result, the signals
received by spatially separated sensors (microphones)
are imperfectly correlated.

A mono-frequency acoustic source at 100 Hz was
used, implying a wavelength of 3:4 m. The duration of
the simulation was 2 s and the turbulence was moved
as a frozen �eld at a velocity of 5 ms�1. A total of 500
�virtual microphones� were randomly placed in one spa-
tial quadrant at a distance of 200 m from the source. It
would have been impractical to perform an actual exper-
iment with so many microphones. Samples of the com-
plex wavefunction1 at each sensor are shown in Figure 7.
In this representation, variations in signal phase produce
sample displacements that are tangent to the unit circle,
whereas variations in amplitude produce displacements
are perpendicular. Each microphone essentially provides
an independent signal sample.

The wave�eld coherence � (r) = h (r0) � (r0 + r)i
determined from the FDTD results is shown in Figure 8.
To make this �gure, signals from pairs of virtual micro-
phones with similar spacing were averaged. Also shown
on the �gure is a theoretical prediction (Ostashev, 1997),
based on the parabolic and Markov approximations, for
the wave�eld coherence during line-of-sight wave prop-
agation. There is a 4% to 6% underprediction of the co-
herence by the theory. We suspect that the disagreement

1The complex wavefunction is de�ned as  = p=p0, where
p = A exp (i�) is the actual received complex acoustic pressure
�eld, p0 is the received �eld in the absence of scattering, A is
the received pressure amplitude, and � is the received phase.
The acoustic pressure p (without bolding) discussed in Section 2
is the real part of p.

FIG. 6: Comparison of the theoretical 1D longitudinal
and lateral spectral densities for the Gaussian QW model
with spectra calculated from synthesized turbulence �elds
such as shown in Figure 5.

results from the wavelength being only a little smaller than
the outer scale in this case. Stricly speaking, the theory
derived in Ostashev (1997) only applies when a1 � �.
Additional testing of the theory by FDTD simulation, with
more frequencies and propagation distances, is planned.

5. CONCLUSION

Acoustic FDTD simulation (and the increasing capa-
bilities of modern parallel-processing computers) makes
possible highly detailed calculations of sound propaga-
tion through dynamic atmospheric �elds. In this paper, we
presented 3D calculations of low-frequency sound propa-
gation through an ABL large-eddy simulation. We also
used acoustic FDTD in combination with kinematically
generated turbulence �elds to test theoretical predictions
for wave�elds propagating through turbulence. Similar
simulations hold promise for elucidating scattering phe-
nomena affecting atmospheric remote sensing systems.
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