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Abstract

Three-dimensional empirical orthogonal func-
tions (EOFs) representing the statistically most
energetic structures are extracted from a high res-
olution large-eddy simulation of a neutral atmo-
spheric boundary layer. Simulated flow patterns
near the ground show so-called streaks, regions
near the surface of alternating high and low speed
fluid organized into nearly linear bands, with hori-
zontal spacing of several hundred meters, oriented
up to 30◦ relative to the geostrophic wind, that
evolve through a continuous cycle of generation,
growth, decay and re-formation.

The leading EOF at a given wavenumber is
found to explain a significant amount of energy
for wave-vectors approximately at right angle
with the streaks. The structure of such EOFs
is interpreted qualitatively and quantitatively in
terms of vertical profiles and momentum flux.
The interaction between the mean flow and the
EOFs is analyzed from an energy budget.
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1 Introduction

Coherent structures in the form of near-surface
streaks are ubiquitous features of large-eddy sim-
ulations (LES) of the planetary boundary layer
(PBL) in which shear plays an important role in
the dynamics (Deardorff (1972); Moeng and Sul-
livan (1994); Drobinski and Foster (2002); Car-
lotti (2002)). Their existence also received re-
cent support from field observations (Drobinski

et al. (2003)). Beyond this qualitative observa-
tions, there is a need for a quantitative analysis of
their individual structure as well as their role in
the dynamics and energetics of the flow. There
have been theoretical attempts to interpret streaks
in terms of optimal linear perturbations of an Ek-
man layer (Foster (1997); Drobinski and Foster
(2002)). Another way is to extract from a numer-
ical simulation the most recurrent structures and
to analyze their contribution to the simulated dy-
namics.

One extraction method is Empirical orthogonal
function (EOF) analysis, also known as proper or-
thogonal decomposition (POD). Such a correla-
tion technique was initially applied to turbulence
by Lumley and others in classical flows (pipe,
channel, boundary layer) (Holmes et al. (1996,
1997)). Such techniques have long been used
in climatic studies to detect large-scale correla-
tion patterns and derive low-dimensional mod-
els. However the lack of datasets having suffi-
cient coverage and resolution prevented until re-
cently this type of analysis in the planetary bound-
ary layer. Wilson and Wyngaard performed an
EOF analysis of a weakly convective atmospheric
boundary layer, extracting EOFs some of which
could be identified as gravity waves or boundary-
layer rolls (Wilson and Wyngaard (1995)). Nev-
ertheless a reliable representation of near-ground
structures such as streaks requires a higher reso-
lution which could be achieved only very recently
(Carlotti (2002)).

In this work, we extract the EOFs of the flow
simulated in (Carlotti (2002)), then analyze their
contribution to the transport of momentum and
the energy balance in this flow.
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Figure 1: Mean wind hodograph normalized by
the friction velocity u∗ = 0.42m · s−1.

2 Mean flow properties

2.1 LES simulation

The simulation runs the non-hydrostatic LES
model Méso-NH in a box with size (L, l, H) =
3km × 1km × 750m along the x, y, z axes
respectively and periodic conditions on the ver-
tical boundaries. The mesh cell is a cube of
side 6.25m, corresponding to a resolution Nx ×
Ny × Nz = 480 × 160 × 120. The Navier-
Stokes equations include a turbulent viscosity
depending on the local subgrid kinetic energy
which obeys a complementary prognostic equa-
tion. Boundary conditions are rigid-lid and
rough ground. The velocity field is decomposed
into a mean flow (U(z), V (z), 0) forced by
large-scale pressure gradient and turbulent fluc-
tuations (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)).
The time-averaged wind hodograph is presented
in figure 1. The velocity is rescaled by the friction
velocity u∗ = 0.42m · s−1. The wind is oriented
about 12◦ left to the x direction in high layers and
about 20◦ left to the long direction close to the
ground, following an Ekman spiral continued by
a log-layer near the surface. In the first 100m, the
wind fluctuations form streaky structures roughly
aligned with the ground wind (Carlotti (2002)).
These structures appear clearly on horizontal cuts
of the velocity field (figure 2).

Figure 2: Snapshot of the three velocity com-
ponents U + u, V + v, w in m · s−1at altitude
z = 60m.

2.2 Reynolds’ stresses

We consider the averaged energy balance for the
resolved turbulent kinetic energy e(x, y, z, t) =
(u2 + v2 + w2)/2 :

〈

∂e

∂t

〉

+ 〈uw〉
dU

dz
+ 〈vw〉

dV

dz
= −ε(z) (1)

∂

∂z
〈pw〉 +

∂

∂z
〈we〉 +

∂

∂z

(

νt

∂e

∂z

)

Assuming statistical stationarity, the evolution
term 〈∂e/∂t〉 vanishes. We present in figure 3 the
shear production 〈uw〉 dU

dz
+ 〈vw〉 dV

dz
and dissi-

pation ε(z), which are the only terms contributing
to the vertically-averaged budget.

3 EOF / POD analysis

3.1 Principle

Consider a random signal represented as an
N−dimensional vector φ. We wish to find an or-
thonormal set of basic vectors φi such that the
projection coefficients ai are mutually indepen-
dent random variables :

φ =
∑

i

aiφi (2)
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Figure 3: Resolved TKE budget : shear pro-
duction (circles) and viscous dissipation (crosses)
normalized by u3

∗
/H .

A necessary condition for this is obtained by con-
sidering the self-correlation matrix, a Hermitian
matrix :

〈φφ∗〉 =
∑

i,j

〈

aia
∗

j

〉

φiφ
∗

j =
∑

i

〈

|ai|
2
〉

φiφ
∗

i

where φ∗ stands for the conjugate-transpose of φ
and 〈〉stands for the statistical (ensemble) aver-
age. It appears from this expression that the φi are
the eigenvectors of the self-correlation correlation
matrix with eigenvalues λi =

〈

|ai|
2
〉

. One can
not in general guarantee that the the coefficients
ai = φ∗

i φ will be mutually independent. How-
ever they satisfy the weaker orthogonality prop-
erty that

Re 〈a∗i aj〉 = 0 when i 6= j.

In practice the statistical average 〈·〉 is com-
puted on a set of realizations of the random signal
φ. Our set of realizations consists of 14 snapshots
of the whole velocity field taken at different in-
stants. Thus we extract the recurrent spatial flow
patterns and drop any temporal or dynamical in-
formation from the signal.

Due to the statistical orthogonality of the pro-
jection coefficients ai any quantity that has a
quadratic dependence of the signal can be on av-
erage be split into individual contributions from

the EOFs. Indeed, such a quantity can be written
q(φ) = φ∗Aφ with A some N × N Hermitian
matrix. Upon averaging one gets :

〈q〉 = A : 〈φφ∗〉 =
∑

i

λiq(φi) (3)

Quadratic quantities of particular interest here are
the energy and the Reynolds’ stresses.

3.2 Fourier and EOF analysis of the ve-
locity fluctuations

Due to periodic boundary conditions in the x and
y directions, it is possible to write the velocity
field in Fourier representation :

u(x, y, z, t) = Re
∑

m,n

ûmn(z, t) exp 2iπ

(

mx

L
+

ny

L

)

where the horizontal wave-vector k = (kx, ky) =
2π(m/L , n/l) is quantized according to the box
dimensions L and l. The advantage is that, as-
suming statistical invariance on horizontal trans-
lations, the cross-correlation between Fourier co-
efficients ûmn(z, t) with different wave vectors is
zero. This allows to solve the eigenvalue problem
separately for each Fourier mode.

As the scalar product underlying the EOF anal-
ysis, we choose the box-averaged kinetic en-
ergy

∫

(ûû∗ + v̂v̂∗ + ŵŵ∗) dz/H . Hence for
each m,n we compute the self-correlation matrix
σmnmade of the Nz×Nz blocks σmn

zz′ of size 3×3
defined as :
〈 û∗

mn(z)ûmn(z′) v̂∗mn(z)ûmn(z′) ŵ∗

mn(z)ŵmn(z′)
û∗

mn(z)v̂mn(z′) v̂∗mn(z)v̂mn(z′) ŵ∗

mn(z)ŵmn(z′)
û∗

mn(z)ŵmn(z′) û∗

mn(z)ŵmn(z′) ŵ∗

mn(z)ŵmn(z′)

〉

.

The values of z and z′ are the Nz = 120 altitudes
resolved by the model. The eigenvalues Emn

i and
eigenvectors (ûmn

i (z), v̂mn
i (z), ŵmn

i (z)) of the
3Nz ×3Nz Hermitian matrix σmn finally provide
the desired EOFs and their energetic weight. The
corresponding flow patterns have a vertical struc-
ture described by (ûmn

i (z), v̂mn
i (z), ŵmn

i (z))
and a sinusoidal horizontal dependence. We sort
the energies Emn

i in descending order Emn
1

>
Emn

2
> . . .Notice that by construction, Emn =

∑

i E
mn
i is exactly the spectral density of kinetic

energy at wave vector k.
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Figure 4: Energy fraction Emn
i /Emnexplained

by the first EOF of each Fourier mode as a func-
tion of the wave vector k = 2π (m/L, n/l).

4 Individual EOFs

4.1 Significant EOFs

We display in figure 4 the energy fraction
Emn

1
/Emn explained by the first (i = 1) EOF

at each wave vector. This quantity is an indica-
tor of the statistical significance of the first EOF.
Suppose for instance that for a given wave vector
Emn

1
/Emn = 1. Then all projection coefficients

ai with i > 1 must be zero in decomposition (2).
Thus the flow (within this Fourier mode) has the
same vertical structure at all instants, but appears
with a random amplitude given by |a1| and at a
random position given by the phase of a1. Con-
versely, if the energy is equipartitioned among all
EOFs, the signal is white-in-space noise. So wave
vectors with a significant (≥ 50%) explained en-
ergy fraction can be said to be “strongly struc-
tured”.

In wave space, such wave vectors are found to
lie close to the line m + n = 0, corresponding
to phase lines nearly parallel to the surface wind
and to the streaks observed qualitatively. Thus
the EOF analysis gives an objective, quantitative
basis to this qualitative observation, with well-
defined statistical properties.

4.2 Flow structure

Due to incompressibility, the flow corresponding
to a single Fourier mode or to several Fourier
modes with parallel wave vectors can be con-
veniently described in terms of an across-wave-

vector horizontal velocity u′ and an along-wave-
vector stream function, from which the vertical
velocity w and the along-wave-vector horizontal
velocity v′ are derived. This description is equiv-
alent to Squire’s transformation in the context of
normal-mode stability analysis (Foster (1997)).

The first EOFs are found to be concentrated
close to the ground with a vertical extension com-
parable to their horizontal wavelength. Thus low-
wavenumber EOFs (−m = n = 1, 2) have a
vertical scale of about 200 ∼ 400 m and are
rather reminiscent of boundary-layer rolls (figure
5). Streaks are more likely to be represented by
higher-wavenumber EOFs (−m = n = 4, 5)
(figure 6).

4.3 Turbulent fluxes

From Parseval’s theorem, the horizontally-
averaged turbulent kinetic energy e(z, t) and
shear production S(z, t) are the sum of contribu-
tions from each Fourier mode :

e(z, t) =

∫ ∫

(

u2 + v2 + w2

) dxdy

2Ll

=
∑

mn

emn(z, t)

emn(z, t) = (ûû∗ + v̂v̂∗ + ŵŵ∗) /2

S(z, t) =

∫ ∫

w

(

u
dU

dz
+ v

dV

dz

)

dxdy

Ll

=
∑

mn

Smn(z, t)

Smn(z, t) = Re

((

û
dU

dz
+ v̂

dV

dz

)

ŵ∗

)

Then the quadratic quantities emn and Smn may
be decomposed on average into contributions
from the individual EOFs:

〈emn(z, t)〉 =
∑

i

Emn
i emn

i (z)

emn
i (z) =

(

|ûmn
i (z)|2 + |v̂mn

i (z)|2 + |ŵmn
i (z)|2

)

/2

〈Smn(z, t)〉 =
∑

i

Emn
i Smn

i (z)

Smn
i (z) = Re

((

ûmn
i (z)

dU

dz
+ v̂mn

i (z)
dV

dz

)

ŵmn∗
i (z)

)
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Figure 5: Flow structure of the first EOF at wave-
vector k = 2π(−2/L, 2/l). The horizontal axis
is parallel to the wave-vector. Top : contours of
cross-wave-vector (along-roll) velocity. Bottom
: contours of along-wave-vector stream function
(regularly spaced).
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Figure 6: Flow structure of the first EOF at wave-
vector k = 2π(−4/L, 4/l). The horizontal axis
is parallel to the wave-vector. Top : contours of
cross-wave-vector (along-roll) velocity. Bottom
: contours of along-wave-vector stream function
(regularly spaced).
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Figure 7: Vertical repartition emn
1

of the kinetic
energy of the first EOFs for Fourier modes −m =
n = 2 (circles) and −m = n = 4 (crosses). Ver-
tical repartition emn of the total kinetic enery con-
tained in the Fourier modes −m = n = 2 (solid)
and −m = n = 4 (dashed)

We display in figure (7) the vertical profiles
of emn

1
(z) for −m = n = 2 and −m =

n = 4. Since EOFs have by construction unit
norm, emn

1
(z) is an adimensional quantity whose

z−average is 1. In both cases, it can be seen that
the energy of the first EOF is concentrated closer
to the ground than the total energy of the corre-
sponding Fourier mode.

We displaiy in figure 8 the shear production
of energy. Most of it is solely due to the first
EOF, except very close to the ground where the
flux intensity contributed by the first EOF de-
creases much faster than the total contribution
by the corresponding Fourier mode. The maxi-
mum shear production for the first EOF of Fourier
mode (−m = n = 4) is attained at an altitude
z ' 60m which corresponds to the typical alti-
tude up to which streaks are observed.

5 Combinations of EOFs

By (3), second-order statistics can be expressed as
the sum of independent contributions from each
EOF. Indications of the relevance of the EOF ba-
sis to represent the flow are given by the con-
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Figure 8: Vertical profile of −Smn
1

(contribu-
tion of the first EOFs to the shear production)
for Fourier modes −m = n = 2 (circles) and
m = −n = 4 (crosses). Vertical profile of the
total shear production Smn for the Fourier modes
−m = n = 2 (solid) and −m = n = 4 (dashed)

tribution of different sets of EOFs to dynami-
cally important quadratic quantities such as the
energy and the shear production. We shall con-
sider and compare the contributions due to four
sets of EOFs :

• the set A = (ûmn
i (z), v̂mn

i (z), ŵmn
i (z))imn

all EOFs of all Fourier modes, whose contri-
bution is by definition the average over the
full flow field

• the set B = (ûmn
1

(z), v̂mn
1

(z), ŵmn
1

(z))mn

of the first EOF of each Fourier mode

• the set C =
(û−m,m

i (z), v̂−m,m
i (z), ŵ−m,m

i (z))i,m

of all EOFs of the line of Fourier modes
previously identified as “strongly struc-
tured”. The contribution of this set to
quadratic quantities is equal to the spectral
contribution of these modes.

• the set D =
(û−m,m

1
(z), v̂−m,m

1
(z), ŵ−m,m

1
(z))m of

the first EOF of each “strongly structured”
Fourier mode.
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Figure 9: Profiles of turbulent kinetic energy con-
tained in sets of EOFs A (solid blue), B (blue
circles), C (solid red) and D (red circles). NB
: semi-logarithmic scale.

So the sets B and C are distinct subsets of A , and
D is the intersection of sets B and C .

5.1 Energy profiles

The contributions to the turbulent kinetic energy
e(z) due to the four different sets considered are
displayed in figure 9. The first EOFs of all Fourier
modes capture about 25% of the total kinetic en-
ergy, at any altitude. This is not small since re-
taining only the first EOFs is equivalent to pro-
jecting onto a basis of Nx ×Ny vectors instead of
Nx × Ny × Nz.

The line m + n = 0 of “strongly structured”
modes represents by itself about 10% of the TKE.
Within these modes, the first EOFs now capture
about 50% of the TKE. This was to be expected
since these EOFs were identified as capturing a
particularly high proportion of the TKE of their
Fourier mode

5.2 Turbulent fluxes

The contributions to the shear production of en-
ergy −S(z) due to the four different sets consid-
ered are displayed in figure 9. Now the first EOFs
of all Fourier modes capture about 50% of the to-
tal kinetic energy. This indicates that first EOFs
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Figure 10: Profiles of shear production of energy
by sets of EOFs A (solid blue), B (blue circles),
C (solid red) and D (red circles). NB : semi-
logarithmic scale.

are more efficient than the average at extracting
energy from the mean flow.

The line m + n = 0 of “strongly structured”
modes contributes for about 10% of S(z). Within
these modes, the first EOFs now represent a frac-
tion of S(z) close to 100% except very close
to the ground. This fall-off can in fact also be
remarked on the contribution of set B. This
would indicate that spatially organized motions
contribute by about 50% to the extraction of the
energy from the mean flow, except for a small
layer (∼ 20m) very close to the ground where
disorganized motion is preponderant. However
we might be reaching the resolution limits of the
model at such altitudes of 2 or 3 grid cells above
the ground.

6 Discussion

The EOF analysis aims at representing a signal as
a superposition of independant, elementary pat-
terns. In our case, the boundary conditions and
the assumed statistical homogeneity imply that
these flow patterns are monochromatic Fourier
modes on the horizontal. The leading EOF at a
given wavenumber was found to explain a signif-
icant amount of energy for wave-vectors approx-
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imately at right angle with the streaks. We de-
scribed the vertical structure of these EOFs. It
appeared that the EOFs for wavenumbers −m =
n ≥ 4 are good candidates to represent the quali-
tatively observed streaks. We analyzed their inter-
action with the mean flow and found that they are
more efficient at extracting energy from the mean
flow that the average fluctuations.

The “strongly structured” EOFs are efficient at
extracting energy from the mean flow and suf-
fer little viscous dissipation due to their relatively
smooth vertical structure and moderate wavenum-
ber. Thus the dominant mechanism for their de-
cay is the nonlinear interaction with other EOFs.
The study of these interactions require the deriva-
tion of an energy budget detailed at the EOF
level. Wilson and Wyngaard (1995) decompose
Reynolds’ energy budget into contributions from
the EOFs. This budget involves analogues of
the terms of shear production, pressure transport
and dissipation, together with a term describing
the EOF-EOF interactions. In a different way,
a vertically-averaged view of the energy trans-
fers between EOFs can be obtained by Galerkin-
projecting the flow dynamics onto the orthonor-
mal basis provided by the EOFs, resulting in
a prognostic equation for the projection coeffi-
cients amn

i . The different terms contributing to
∂(amn∗

i amn
i )/∂t will provide the desired infor-

mation.
In both cases the average value of nonlinear

terms imply cubic statistics which can not be ob-
tained from the EOFs and their energetic weight.
Wilson and Wyngaard obtain the nonlinear terms
as the remainder of the energy budget when all
other terms have been computed. At this degree
of detail, this can give a precise result only if the
energy budget is derived from the discrete equa-
tions simulated by the model and not from their
continuous formulation. This question is under
current investigation.
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