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1. INTRODUCTION

In-situ measurements from isolated vertical towers
provide only a very limited picture of multi-dimensional
flow structure in the atmosphere. For purposes such as
examining the role of coherent structures in the near-
ground atmosphere, characterizing flow patterns in com-
plex terrain, and developing large-eddy simulation (LES)
subgrid-scale models, observation techniques that ex-
tend beyond the limitations of single instrumented towers
are necessary. Volume-imaging lidar and radar technolo-
gies have progressed rapidly in recent years, and these
systems are now providing detailed, multi-dimensional
images of the atmospheric boundary layer (ABL). There
still appears to be a need, however, for an inexpensive,
multi-dimensional observation system for near-ground
flow imaging on the scale of tens to hundreds of meters.
Such observations have usually been supplied previously
by dense arrays of vertical towers. An alternative tech-
nique, which is still in a developmental stage, is acoustic
tomography (Wilson et al., 2001).

Acoustic tomography uses the travel times of pulses
(which depend on wind velocity and temperature) to re-
construct regions of the medium through which they prop-
agate. Travel-time tomography is being used today, with
much success, to image the ocean and solid Earth. The
feasibility of acoustic tomography of the near-ground at-
mosphere has been previously demonstrated in several
field studies, e.g., Wilson and Thomson (1994) and Zie-
mann et al. (1999). However, a quantitative examina-
tion of the accuracy of the methodology is difficult, be-
cause the tomographic observations are averages along
lines (the propagation paths between the sources and
receivers) and therefore cannot be directly compared to
point observations in the atmosphere. The value of to-
mography in comparison to observations from multiple,
in-situ vertical towers also needs to be examined more
critically.

We begin this paper with a general discussion of
the problem of “inverting” a finite set of line or point
measurements to reconstruct a continuous turbulence
field. Statistical methods are used to study errors re-
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sulting from imperfect and incomplete information used
during the inversion process. We then assess the per-
formance of acoustic tomography numerically by simulat-
ing both the direct and inverse problems. Realistic, high-
resolution turbulence fields are synthesized in the tomo-
graphic plane using the quasi-wavelet method. Sound
is propagated through these fields to obtain travel-time
data. Various inverse methods, based on grid-cell parti-
tioning of the tomographic plane as well as on continuous
field reconstructions, are then applied and the accuracy
in imaging the original turbulence field is ascertained.

2. INVERSION OF TOMOGRAPHIC AND POINT DATA

Consider the general problem of reconstructing at-
mospheric fields from a set of indirect observations. The
observations di , where i = 1, . . . , Nd , are arranged as a
column vector d. In the normal parlance of inverse prob-
lems, d is called the data vector. Similarly, suppose a
number of samples of the atmospheric fields, mj , where
j = 1, . . . , Nm, are arranged as a column vectorm. These
atmospheric fields may sample different points in space
and/or multiple fields.1 The quantity m is referred to as
the model vector. The general, linear inverse problem is
to construct an operatorG−1x that allows a good estimate
m̂ of the actualm to be determined from d:

m̂ =G−1x d. (1)

It can be shown that the optimal inverse operator, in the
sense of minimizing the expected mean-square errors−
e2j
®
=
D¡bmj −mj

¢2E (where the angle brackets indicate
the statistical expectation), is

G−1s = RmdR
−1
dd , (2)

in which Rmd =
D
medE is the model-data covariance ma-

trix and Rdd =
D
dedE is the data-data covariance matrix.

1The models and data are usually taken to be perturbations
about a reference state. Conceptually, the models may be any
atmospheric field(s). In this paper, they are the sound speed
(which depends primarily on temperature) and wind velocity
components. The data may consist of point observations of the
sound speed or wind velocity, or, for the tomograpy, the travel-
time of a signal along a trajectory connecting a source/receiver
pair.



(The tilde indicates matrix transposition.) The operator
G−1s is called the stochastic inverse by Aki and Richards
(1980).

To complete the formulation, we need a statistical
model for the covariance matrices. Typically, the data
d are assumed to depend linearly on the underlying at-
mospheric fields. One can then calculate Rmd and Rdd
from knowledge of the spatial correlation functions of the
atmospheric fields. If d consists of point observations
of atmospheric fields, this process is trivial. For exam-
ple, suppose d is a set of in-situ temperature measure-
ments at an array of towers, and we wish to construct
the model m at intermediate points. Then Rmd is simply
the correlation function for the temperature field between
the observation points and the points of the reconstruc-
tion, and Rdd consists of the correlations between the
temperatures at the observation points. The situation for
tomography is a bit more complicated: one must relate
the travel-time of the acoustic pulses to the atmospheric
fields along their trajectories. But, this is a well defined
problem and its solution is discussed, for example, in Wil-
son and Thomson (1994).

The principle difficulty in setting up the optimal sto-
chastic inverse is that the correlation functions for the at-
mospheric fields are not known in advance. It is possible
to estimate Rdd from an observational dataset, since a
time series of the data are available. The same cannot
be said of Rmd , because there is no access to the at-
mospheric fields at the reconstruction points. Therefore,
the optimal (true) stochastic inverse is actually unattain-
able in most real-world problems. The best we can hope
for is a reasonable approximation to the optimal inverse.

Given that the correlation function of the atmospheric
fields is unknown, it may initially seem desirable to adopt
alternative approaches to the inverse problem that are
“agnostic” with regard to the structure of the atmospheric
fields to be reconstructed (the model space). But, in actu-
ality, inverse methods that initially appear agnostic often
make very significant assumptions about the atmospheric
correlation function. For example, an inverse technique
that partitions the atmosphere into a finite number of grid
cells in effect assumes that the fields are perfectly corre-
lated between two points within each cell, and are com-
pletely uncorrelated between points in different grid cells.
This step behavior for the correlation function is unrealis-
tic in a fluid medium, as it forces a discontinuous solution
on a continuous field.

Reconstruction of atmospheric fields based on inter-
polations between observation points also makes implicit
assmptions about the spatial correlation functions. The
correlations depend on the spline of the particular inter-
polation method. For example, if linear interpolation is
used, the underlying correlation functions would consist
of a sequence of linear regions. It is also common to
reconstruct the atmospheric fields from a discrete set of
measurements by fitting the measurements with a trun-
cated harmonic series. Such a procedure, by setting the
high wavenumber components of the medium to zero, im-
plies a correlation function that is artificially high for small

spatial separations.
This reasoning should not be construed as imply-

ing that inverse methods based on gridding of the at-
mospheric fields, interpolation, or truncated harmonic se-
ries are inherently poor. In application, these approaches
may lead to satisfactory inverse solutions while offering
benefits such as low computational effort. The point to
be made is that they are not agnostic as far as the cor-
relation structure of the atmospheric fields. The under-
lying assumptions may just not be as obviously evident.
Since the problem of reconstructing a continuous medium
from finite measurements is inherently an underdeter-
mined one, it would seem impossible to devise inverse
methods that do not involve assumptions about the spa-
tial structure of the model space.

Since the true stochastic inverse cannot be calcu-
lated in practice, the question arises whether the sto-
chastic inverse formalism provides good results when a
correlation function somewhat different from that of the
actual atmosphere is used. One could view the corre-
lation function used to calculate the stochastic inverse
as a sort of smoothing function. For example, data are
collected at observation points spaced at an average
distance L, a Gaussian correlation function with length
scale set to L might be used to calculate the stochas-
tic inverse. The reconstructed atmospheric fields would
then be reconstructed with smoothing at a scale corre-
sponding to the spacing between the observation points.
When viewed in this regard, the stochastic inverse is quite
similar to smooth interpolation between the observation
points. The discussion is complicated somewhat when
the observations consist of line averages (such as in a
tomography experiment), but the basic idea remains of
viewing the correlation function in the stochastic inverse
as the basis for smoothing the reconstruction.

3. ERROR MAPS AND CORRELATION FUNCTIONS

To assess the accuracy of a particular inverse oper-
ator G−1x , the error-error covariance matrix (defined as
Ree = heeei, where e = bm−m) may be calculated. It can
be shown that

Ree = Rmm −G−1x eRmd −Rmd eG−1x +G−1x Rdd eG−1x , (3)
where Rmm is the model-model covariance. Although
knowledge of the correlation function of the atmospheric
fields is not necessarily required to calculate a particular
inverse operatorG−1x , the correlation function is required
to calculateRmm,Rmd , andRdd in (3) and thereby assess
the error associated with the inverse operator.

For the optimal stochastic inverse, (3) simplifies to

Ree = Rmm −RmdR
−1
dd

eRmd . (4)

Since the second term on the right of (4) is positive def-
inite, the stochastic inverse always reduces the diagonal
elements ofRmm (the a priori variance of the atmospheric
fields). The resulting diagonal elements of Ree are the
theoretical lower bound on the error of the reconstructed
fields.
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FIG. 1: Sensor array used for example calculations in
this paper. The region is a horizontal one with dimensions
100 m × 100 m. Open, red circles indicate source loca-
tions and closed, cyan circles indicate receiver locations
for the tomography. For point measurements, sensors are
placed at each source and receiver location. Solid lines
indicate ray paths for tomographic inversions. Dashed
lines indicate boundaries of grid cells used for construc-
tion of the generalized inverse.

We now consider some example error calculations
that demonstrate the effect of a mismatch between
the presumed and actual correlation functions for the
medium. The sensor array used for all calculations is
shown in Figure 1. The figure shows the locations of
acoustic sources (open circles) and receivers (closed cir-
cles), and all propagation paths connecting them. For
comparisons involving point sensors, the sensors were
placed at the same locations as the sources and re-
ceivers. There are a total of 9 sources and 9 receivers,
which results in 81 propagation paths. In comparison,
there are only 18 point sensors.2

For simplicity, our initial examples are based on an
unknown scalar (e.g., a temperature or sound-speed
perturbation). The actual correlation function for the
medium is postulated to correspond von Kármán’s spec-
trum, specifically

f (r ) = 2σ2

Γ (1/3)

µ
r
2cK

¶1/ 3
K1/ 3

µ
r
cK

¶
, (5)

where r is the distance between two points, σ2 is the
variance of the field, and cK is the outer length-scale

2The configurations considered here are 2D planar arrays.
The same inverse techniques can also be applied to 3D arrays.
Alternatively, one could build a 2D, vertical planar array, perpen-
dicular to the mean wind, and then use Taylor’s frozen turbulence
hypothesis to determine structure parallel to the wind.
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FIG. 2: Errors produced by the von Kármán correla-
tion function model for various mismatches between the
actual and presumed length scales. The mean-square
error for the field point (x, y) = (30m,40m) is shown.
Solid lines are the minimum error attainable (when the ac-
tual and presumed length scales match) for actual length
scales cK = 30, 60, and 100 m. Dashed lines vary the
presumed correlation length scale.
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FIG. 3: Comparison of errors from von Kármán,
Gaussian, and exponential correlation function models.
The mean-square error for the field point (30 m, 40 m) is
shown. Solid line is the minimum error attainable (when
the actual and presumed length scales match). Dashed
lines show the effect of varying the length scales used in
the different correlation models.

parameter for the von Kármán model. (The term “outer
length scale” is used here to indicate a length scale near
the boundary between the energy-containing and inertial
subranges. It is approximately equal to the integral length
scale.) Other correlation functions we consider are the
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FIG. 4: Map of the mean-square error associated with
reconstruction of a scalar field from measurements at 18
point sensors. The turbulence has a von Kármán corre-
lation function with length scale cK = 60 m. The same
correlation function is used in the field reconstruction.

Gaussian
f (r ) = σ2 exp

µ
− r

2

c2G

¶
, (6)

and exponential

f (r ) = σ2 exp
µ
− r
ce

¶
. (7)

Note that cK , cG, and ce are defined differently and there-
fore are not presumed equal.

Figure 2 shows the effect of mismatches in the von
Kármán length scale on the error at an example model
reconstruction point, (x, y) = (30m,40m). These calcula-
tions are for the point-sensor experiment. Three “actual”
values of the length scale are considered: cK = 30, 60,
and 100 m. The dashed lines indicate the lower bound
on the error, as determined from (4). The solid lines show
the error when the stochastic inverse is reconstructed
with a value ranging from cK = 1 to 100 m. When the
presumed value of cK is close to or larger than the actual
value, the error is essentially at the lower limit. A signif-
icant increase in the error only occurs when too small a
value for cK is used. The nearest sensor to the model
point is 10m distant. If the value of cK is smaller than
10m, the stochastic inverse determines that the data pro-
vide little information at the model point. Therefore, the
perturbation in the reconstructed field at the model point
is set close to zero. In actuality, because the correlation
between the available data and the model are rather high
for all considered actual values of cK , the presumed lack
of information was incorrect and led to an unnecessarily
high error.

Figure 3 is similar to 2, except that the effect of as-
suming an incorrect shape to the correlation function is
shown. The actual spectrum is assumed to be von Kár-
mán’s, with cK = 60 m, and the error at the model recon-
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FIG. 5: Same as Figure 4, except that the correlation
function used in the field reconstruction is Gaussian with
cG = 60 m.
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FIG. 6: Same as Figure 4, except that the mean-square
error is shown for a tomography experiment with 81 ray
paths.

struction point (x, y) = (30m, 40m) is again shown. In-
terestingly, the exponential correlation function performs
very similarly to the von Kármán correlation. For suffi-
ciently large length scales, either choice provides nearly
optimal reconstructions. The Gaussian correlation func-
tion, however, produces comparatively larger errors, par-
ticularly when cG ' 35m. This is likely related to the
behavior of the second derivative for the Gaussian corre-
lation function: it changes sign from negative to positive
at r = cG/

√
2, whereas the von Kármán and exponential

correlations have positive second derivatives for all r .
Figures 4–6 show 2-D error map images (diagonal

elements of Ree) for various inverses. In each example,
the actual spectrum for the turbulence is von Kármán’s,
with cK = 60 m. The first example, Figure 4, is for point
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FIG. 7: Turbulent sound-speed field randomly synthe-
sized by the QW method. Color scale is the speed in
ms−1.
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FIG. 8: Point-measurement reconstruction of the
sound speed based on observations of the fields shown
in Figure 7.

sensors at the locations indicated in Figure 1. The pre-
sumed spectrum matches the actual one, so that the er-
ror map is the optimal stochastic inverse. As would be
expected, the error is zero at the point sensor locations
and increases gradually away from the sensors. Figure
5 is the same as 4, except that the presumed spectrum
is Gaussian with cG = 60 m. In this case, the error in-
creases rather dramatically outside the areas with dense
sensors. Figure 6 shows the optimal stochastic inverse
for sources and receivers positioned as in Figure 1. The
increase in the number of data (from 18 to 81) and path
averaging has led to a dramatic improvement in the infor-
mation available from the measurements.
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FIG. 9: Tomographic reconstruction of the sound speed
based on ray paths through the fields shown in Figure 7
using the stochastic inverse method.
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FIG. 10: Tomographic reconstruction of the sound
speed based on ray paths through the fields shown in
Figure 7 using the generalized inverse method.

4. SCALAR FIELD RECONSTRUCTIONS

This section presents simulated scalar field recon-
structions from point measurements and a tomography
experiment. The example scalar field, shown in Figure 7,
is randomly synthesized by the method of quasi-wavelets
(QWs) (Goedecke et al., 2004; Wilson et al., 2004). The
QWs have a continuous size distribution from 5 m to 25
m. For eddy sizes between these values, the synthesized
QW field posseses a k−5/ 3 Kolmogorov inertial subrange.
The standard deviation of the scalar field was set to 0.3
ms−1. The synthesized field has a spectrum close to
von Kármán’s although the lack of eddies smaller than
about 5 m creates a high-wavenumber roll-off similar to
a dissipative subrange. For the tomography simulations,



the travel time of rays between each source-receiver pair
was determined through a numerical integration process.
Random noise with a standard deviation of 10−5 s was
added to the travel times to account for measurement er-
rors.

To illustrate the outcome of using a length scale for
the presumed correlation function that is too small, the
stochastic inverses for the point measurements and to-
mography experiment were calculated with a Gaussian
correlation function and cG = 10 m.3 The resulting re-
constructions are shown in Figures 8 and 9. The abil-
ity of the point measurements to find eddies is a “hit-
or-miss” process. For example, two “hot spots” (high
sound-speed) regions centered at approximately (20,10)
and (30,30) are captured because sensors are present
at these locations; a similar hot spot at (30,85) is largely
missed because it was not close enough to any sensors.
The tomography, being based on path-average measure-
ments, provides a smoothed picture of the flow that does
not miss substantial eddy activity. The domain-average,
normalized mean-square error (i.e.,mean [diag (Ree)] /σ2)
was 0.54 for the point measurements and 0.29 for the to-
mography.

Figure 10 shows a tomographic reconstruction of the
scalar field based on application of the generalized in-
verse method (Aki and Richards, 1980). This method
uses a singular-value decomposition of the forward-
problem solution and does not involve any explicit as-
sumptions regarding the spatial statistical structure of the
medium. For this example, the domain was partitioned
into 25 grid cells, as shown in Figure 1. Since 81 data are
being used to construct 25models, the problem is overde-
termined. Some correspondance between the general-
ized inverse results and the low and high sound-speed
regions in the original data (Figure 7) are evident. How-
ever, the domain-average, normalized mean-square error
was 1.1. That is, the tomography and generalized inverse
method actually led to fields that were statistically less re-
liable than assuming the perturbations were zero. This
outcome illustrates the undesirability of forcing a discon-
tinuous inverse solution onto a continuous medium.

5. APPLICATION TO FLOW-IMAGING TOMOGRAPHY

The travel time of acoustic pulses in the atmosphere
depends on the wind velocity as well as the sound speed.
Because the effective speed of a ray is the actual sound
speed plus the wind component in the propagation direc-
tion (this statement neglects refraction effects), ray paths
at multiple angles through a given region allow both the
sound speed and wind velocity to be determined. In this
section, we simulate a tomography experiment where the
sound-speed and wind-velocity fields are simultaneously

3All stochastic inverse reconstructions in this paper were per-
formed on a grid of 101×101 grid points, yielding a 1-m reso-
lution. This resolution was chosen because it produced visually
smooth fields and carried a reasonable computational burden.
Since the stochastic inverse estimate at a given model point is
independent of all others, in principle the reconstruction can be
done at an arbitrarily high resolution.

reconstructed. The sound-speed and wind-velocity fields
were both randomly synthesized in the tomographic plane
from QWs with sizes ranging from 5 m to 25 m. The
sound speed and wind fields are synthesized separately
and therefore are uncorrelated. The stochastic inverse
was estimated based on a presumed Gaussian correla-
tion function with cG = 10 m. The standard deviation was
0.3 ms−1 for the sound speed and 0.6 ms−1 for each of
the wind components.

Figures 11–14 show the synthesized random wind
fields and reconstructions. The domain-average, normal-
ized mean-square error was 0.80 for the tomographic
sound-speed reconstruction (not shown), 0.64 for the
wind component in the x-direction, and 0.41 for the wind
component in the y-direction. The error for the sound
speed is highest because its contribution to the travel-
time fluctuations is lowest in this example, and therefore
the data contain the least information on that variable.
The greater accuracy for the y-wind component relative
to the x component was observed in this and several
other random trials. It likely results from the ray paths
being oriented more often along the y-direction than the
x-direction. Arrays with ray paths having a more isotropic
distribution in azimuth could avoid this effect.

6. CONCLUSION

Example simulations presented in this paper suggest
that tomographic measurements can provide accurate,
multi-dimensional images of atmospheric wind and tem-
perature fields. In comparison to in-situ point sensors, the
tomographic observations provide smoothly filtered fields
that capture all strong activity in the measurement region.
The smoothing effect of tomography could make it a use-
ful alternative to point sensors for evaluating LES sub-
filter scale models (Sullivan et al., 2003). The “multiplier”
effect of tomography (in which the number of observa-
tions grows as the product of the number of sources and
receivers, rather than in proportion to the number of sen-
sors) is also a valuable benefit. The challenge remains,
however, of developing reliable, inexpensive, and reason-
ably easy-to-use hardware that performs acoustic tomog-
raphy.

A particular problem studied in this paper was the
effect on stochastic inverse calculations of mismatch be-
tween the presumed spatial correlation function for the at-
mospheric fields and the actual one. The results showed
that an accurate inverse reconstructions can be obtained
even when the presumed correlation function differs sub-
stantially from the actual one. In particular, near-optimal
results can be obtained when the presumed outer length
scale is approximately equal to or larger than the actual
outer scale. Poor reconstructions occur when the pre-
sumed outer length scale is smaller than the actual one.
In that case, the stochastic inverse method assumes no
information of the fields far from the well probed part of
the medium, and therefore sets the field perturbations to
zero. Results also suggested that a Gaussian correla-
tion function produces less satisfactory results than the
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FIG. 11: Turbulent velocity field randomly synthesized
by the QW method. The wind component in the x-
direction is shown. Color scale is the wind speed in
ms−1.
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FIG. 12: Turbulent velocity field randomly synthesized
by the QW method. The wind component in the y-
direction is shown.

von Kármán and exponential correlation functions, par-
ticularly if the field is estimated at a point outside the
densely probed part of the medium.
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