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1 ABSTRACT 

Spatial variation in measurements of atmospheric 
humidity provide a basis for creating interpolated 
estimates of humidity variables such as vapour 
pressure. Here we compare several different thin plate 
spline models of 1961-90 monthly vapour pressure 
normals observed at Canadian climate stations 
including a model where observed vapour pressures 
were first adjusted to sea-level using standard 
barometric correction. Using a set of 30 stations 
withheld from the fitting procedure, we performed 
independent validations of each model. All models in 
fact had good signals and would generally be 
considered as acceptable according to standard 
diagnostics. In general, withheld data could be 
predicted with mean errors of less than 10 Pa. The best 
model was a square root transformation of the vapour 
pressure field and a trivariate spline with a spatially 
varying dependence on elevation as determined by the 
data network. The maps generated as the final products 
used all data points except for three stations identified 
as potentially anomalous during the model-building 
phase. 

2 INTRODUCTION 

Atmospheric vapour pressure, ea, is one of many 
climatic parameters of interest to meteorologists, 
ecologists and agriculturists. Vapour pressure is 
defined as the pressure exerted on any surface by 
gaseous water molecules (Linacre et al., 1977). Water 
vapour obeys Dalton’s Law, which states that the total 
pressure of a mixture of gases equals the sum of the 
partial pressures exerted by each constituent gas (List 
1949). Hence, vapour pressure is the partial pressure 
exerted by water vapour in a mixture of other 
atmospheric gases (which together make up “dry air”) 
to yield the total barometric pressure.  

Thus vapour pressure is the pressure exerted by 
moisture in the air, and increases with both atmospheric 
temperature and moisture content. It is related to 
relative humidity in that the latter is the ratio of the 
actual vapour pressure to saturation vapour pressure at 
the same temperature. Water vapour in the air can be 
described directly or indirectly in several ways 
including: 

 
1) Water vapour pressure (the pressure exerted on 

any surface by gaseous water molecules);  
2) Vapour pressure deficit (the difference between the 

saturation water-vapour pressure and the actual 
water-vapour pressure); 

3) Relative humidity (the ratio of the actual water-
vapour pressure to the saturation water-vapour 
pressure at dry-bulb temperature); 

4) Absolute humidity, or vapour density (the mass 
concentration of water vapour per unit volume of 
air); 

5) Mixing ratio (the ratio of the masses of water vapour 
to dry air, respectively); 

6) Specific humidity (the ratio of the masses of water 
vapour to moist air, respectively);  

7) Dewpoint (the temperature to which the air must be 
cooled for the water vapour content to reach 
saturation).  

 
Saturation is a dynamic equilibrium state where 

water is constantly evaporating and condensing. The 
intensity of this process is measured directly by vapour 
pressure and indirectly by temperature. At saturation, 
air holds the maximum amount of water vapour 
possible. Hence, at saturation, the dew point 
temperature equals the air temperature. Further, the 
relative humidity is 100%, and the vapour pressure is 
equal to the saturation vapour pressure.  

Water vapour is generally introduced into the 
bottom of the atmosphere by evaporation from a moist 
surface. It becomes vertically distributed by turbulent 
mixing processes including free convection of warm 
surface air and forced advection due to wind, as well as 
synoptic-scale circulation of air masses (see Stull, 1988 
for details).  

The unit measurement of vapour pressure is the 
kilopascal: one kilopascal is equal to 10 millibars, 
0.2953 inches of mercury, or 0.145 pounds per square 
inch. Accurate measurement of atmospheric humidity is 
as much art as science (Weast, 1973), with the 
preferred instrument being a high quality aspirated 
psychrometer, although for most practical purposes 
dew-point hygrometers are considered more reliable.  

Vapour pressure deficit (VPD), defined as  
e*(Ta) – ea, where e*(Ta) denotes saturation vapour 
pressure at air temperature Ta, is another measure of 
atmospheric humidity often used to model evaporation 
of water from moist surfaces, because it approximates 
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the water potential gradient between saturated air at or 
just above a moist surface and the vapour pressure of 
the “free air”. The VPD multiplied by an appropriate 
transfer coefficient then allows the evaporative flux to 
be estimated. In practice, however, it is often important 
to calculate this gradient more precisely by replacing Ta 
with the surface temperature. In the case of plants, 
transpiration is a process that evaporates water 
molecules from a moist cell surface (at leaf 
temperature) and transfers them to the free air, 
although the pathway may be restricted by structures 
such as stomata embedded in the leaf surface. Hence 
atmospheric vapour pressure is often used as an 
important driving variable for many models of plant 
transpiration and canopy evapotranspiration. 

Here, we report the development of a high 
resolution spatial vapour pressure data set suitable for 
driving spatialized process models applied to Canada. 
Rasmusson (1967) provides discussion and maps of 
the spatial nature of water vapour in North America. 
Castellvi et al. (1996, 1997) describes some methods to 
develop regional vapour pressure deficit models. 
Castellvi et al. developed models for estimating daily 
vapour pressure deficit at weather stations in which 
only temperature and precipitation are measured. There 
are a range of expressions for estimating saturation 
vapour pressure as a function of temperature at 
standard pressure. They include the Goff-Gratch (1946) 
formulations as presented in the Smithsonian Tables 
(List, 1949) or one of the many empirical equations 
which have appeared in the literature (e.g., Tetens 
1930; Murray, 1967; Richards, 1971; Tabata, 1973; 
Campbell 1977; Lowe, 1977; Rasmussen, 1978), all of 
which use the Goff-Gratch formulation as a standard for 
comparison. The Goff-Gratch approach is generally 
considered the most accurate, suitable for generating 
tables, but it is computationally inefficient when used for 
“on-the-fly” calculations, as in process models. A 
complete survey of those equations appears in Sargent 
(1980). The 6th order polynomials of Lowe (1977) are 
now generally accepted to provide excellent agreement 

with the Clausius-Clapyron and Goff-Gratch equations 
while being computationally much faster than the latter. 

Our objective is to describe the development of a 
national monthly mean vapour pressure (VP) model for 
Canada and hence provide some baseline vapour 
pressure reference data for Canada away from the 
stations for which it is calculated. This VP field is 
available as one of several climate fields available from 
the Canadian Forest Service, Landscape Analysis and 
Applications Section – Sault Ste. Marie 
(http://www.glfc.cfs.nrcan.gc.ca/landscape/climate_mod
els_e.html). It was derived using the ANUSPLIN thin 
plate smoothing spline algorithms of Prof. Michael 
Hutchinson, Centre for Resource and Environmental 
Studies at The Australian National University 
(http://cres.anu.edu.au/) and station data from 
Environment Canada’s Climate Data Centre in 
Downsview, Ontario. 

3 DATA AND METHODS 

Mean hourly data by month from 176 stations were 
available from Meteorological Service of Canada’s 
Monthly Climate data base. Figure 1 shows the 
locations of the stations including those withheld from 
the initial model-building phase for validation purposes. 
The data are a synthesis of hourly vapor pressure 
values derived from dew point temperature through 
conversion tables. For air temperatures colder than –
37o C where dew-point temperatures were not 
available, a value of 10 Pascal (Pa) was assumed. The 
monthly values were averaged for the 1961 to 1990 
period using any station with five or more years of 
records, regardless of missing year-month totals or 
counts. The values range from 0.07 kPa in winter 
(northern Arctic) to 1.78 kPa in summer (southern 
B.C.).  

Table 1 illustrates, from 5 selected stations, the 
seasonal changes in vapor pressure across Canada, 
which are very much influenced by air streams from 
three distinct sources: the Pacific, Atlantic and Arctic 
Oceans. Over land, atmospheric humidity is invariably 
higher in summer, because the warmer air can hold 
more moisture and higher surface temperatures 
increase evaporation and transpiration from lakes, 
rivers and vegetation. Hence, for much of the country, 
the humidity of air near the surface is influenced by a 
combination of synoptic processes and seasonal 
changes in vegetation, as well as proximity to inland 
water bodies. 

In winter, atmospheric humidity is highest on the 
two coasts, particularly the Pacific, with values of 0.67 
kPa in Vancouver BC and 0.40 kPa in Halifax. In the 
mid-continental regions, the low temperatures, often 
due to outflows of frigid Arctic keep the interior humidity 
very low, with values of 0.16 and 0.18 kPa in Winnipeg 
and Saskatoon respectively. Humidity increases rapidly 
in spring, and high throughout the country recording 
values of 1.44 kPa and 1.66 kPa on the east and west 
coasts respectively and 1.57 kPa in Portage La Prairie. 
In October as surface temperatures decrease and after 
deciduous vegetation has shed its foliage, vapor 
pressure decreases more rapidly in the interior and 
slower on the Pacific and Atlantic coasts. 
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Figure 1. Geographic locations of 176 vapour pressure 
stations: 146 stations used for surface fitting and 30 
stations withheld for validation. All but three suspect 
stations were used in the final model. 
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Table 1. Vapour pressure values for 5 selected stations across Canada by season. 
 
 

Of the 176 available stations, 25% have between 5-
10 years of record, 11% have between 11-14 years of 
record, 15% had between 15-19 years of record and 
49% have more than 20 years of record length.  

ANUSPLIN is a suite of Fortran programs for 
applying thin plate spline data smoothing techniques to 
noisy multi-variate data. It is now quite widely used as 
an interpolation technique for climate data in Australia, 
China and parts of southeast Asia, South America, 
Africa, Europe and New Zealand and Canada (e.g. 
Hutchinson, 1995; 1998a; 1998b; New et al 2002; Price 
et al. 2000; McKenney et al. 2001). Thin plate splines 
can be viewed as a generalization of a multivariate 
linear regression model in which the parametric model 
is replaced by a “suitably” smooth nonparametric 
function. It becomes a spatially continuous interpolation 
methodology when position variables (e.g. latitude and 
longitude) are used as independent variables in a 
model. A comprehensive description of thin plate 
smoothing splines (not to be confused with univariate 
splines) has been given by Wahba (1990). A general 
model for a thin plate spline function f fitted to n data 
values zi at positions xi is given by (Hutchinson, 1995): 

),,1()( nixfz iii �=+= ε
 

[1]
 

where the xi typically (although not necessarily) 
represent longitude, latitude and a suitably scaled 
elevation. The εi are zero mean random errors that 
account for measurement error as well as deficiencies 
in the spline model, such as local effects below the 
resolution of the data network. Importantly for the case 
considered here, the εi include errors due to the 
shortness of record of half of the data points. 
Hutchinson (1995) presents an analysis of these errors. 
The degree of smoothing in the fitted surfaces is 
determined by minimizing the Generalized Cross 
Validation (GCV) statistic, a measure of the predictive 
error of the surface. It is calculated by implicitly 
removing each data point and summing the square of 
the difference of each omitted data point from a surface 
fitted to all the remaining data points (see Hutchinson 

and Gessler, 1994). The procedure also provides an 
estimate of the variance of the εi. 

Model assessments are generally done through 
examination of automatically generated model 
diagnostics and in some cases withholding data from 
initial models and comparing estimated versus 
observed values at these locations. Three automatically 
generated diagnostics are described here. The SIGNAL 
is the degrees of freedom of the fitted spline and varies 
between zero and the number of stations used for 
interpolation. Hutchinson and Gessler (1994) suggest 
that the signal should generally not be greater than 
about half the number of data points. Models with a 
good signal provide a balance between data smoothing 
and exact interpolation. Models with a poor signal are 
typically closer to an exact interpolation and can result 
in steeper gradients between stations. Exact 
interpolation also implies no source data errors, which 
is normally an unrealistic conclusion. The square root of 
the GCV (RTGCV) is a measure of the predictive error 
of the surface. It is a robust, but somewhat conservative 
estimate of overall prediction error, since it includes the 
errors in the data as given by the variance of the εi. The 
root mean square model error (RTMSE) is an estimate 
of standard error after the estimated data error, as 
ascribed to the εi, has been removed. Since the εi 
include both model error and data error, the true error 
of the fitted model lies between the RTGCV and the 
RTMSE. Both RTGCV and RTMSE can be less 
accurate estimates of overall error when the data points 
are very unevenly distributed as shown in Figure 1. 

If data are withheld from the model fitting process 
ANUSPLIN can also generate a number of comparative 
statistics for the withheld data. These statistics are 
independent of model assumptions, but do depend on 
how the withheld data are chosen. Two reported here 
are the Mean Error (ME) and the Root Mean Square 
Error (RMSE). The Mean Error is an indicator of bias in 
the model. The Root Mean Square Error is sensitive to 
the size of outliers and is an indicator of the magnitude 
of extreme errors (i.e., lower RMSE indicates greater 
central tendency and generally smaller extreme errors). 

Index Longitude Latitude Elevation Jan Apr Jul Oct 
Mean 

Annual Station Name Province 
   m kPa kPa kPa kPa kPa   

1108447 -123.1667 49.1833 3 0.67 0.86 1.44 1.06 1.02 VANCOUVER A BC 

3012205 -113.5833 53.3000 715 0.22 0.49 1.29 0.57 0.63 EDMONTON 
INT A ALTA 

4057120 -106.6833 52.1667 501 0.18 0.51 1.29 0.56 0.62 SASKATOON SASK 

5012320 -98.2670 49.9000 270 0.16 0.54 1.57 0.67 0.71 PORTAGE LA 
PRAIRIE A MAN 

7025250 -73.7500 45.4667 31 0.25 0.61 1.73 0.86 0.87 DORVAL A 
MONTREAL QUE 

8205090 -63.5000 44.6333 51 0.40 0.63 1.60 0.99 0.90 DARTMOUTH A 
HALIFAX NS 
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If the withheld data are chosen randomly (not the case 
here) the RMSE will be similar to the RTGCV.  

An important feature of ANUSPLIN is its capacity to 
generate Bayesian standard error estimates at specific 
point locations or for maps (see Hutchinson, 1995). 
These error estimates allow for the density of the 
supporting data points. We map these estimates for the 
final selected model. A complete description of the 
statistics associated with thin plate smoothing splines 
can be found in the ANUSPLIN manual (see also 
Hutchinson, 1995). For some models we used a square 
root transformation of the vapour pressure field in the 
surface fitting procedure. This is useful in reducing the 
positive skew in naturally positive data such as vapour 
pressure and precipitation. Hutchinson (1998a) found 
the square root transformation to reduce interpolation 
error in precipitation analyses. 

Our national vapour pressure model was 
completed following experimentation with several 
alternative ANUSPLIN model formulations and 
investigation into certain data fidelity questions that 
arose during the initial analysis phase. The models 
reported here were as follows: 

 
Model 1 – a bivariate model (latitude and longitude – 

x, y);  
Model 2 – a bivariate model with elevation as a 

covariate (implying a constant, non-spatially 
varying lapse rate);  

Model 3 – a trivariate spline incorporating a spatially 
varying dependence on elevation (x,y,z); 

Model 4 – a trivariate spline (x, y, z) with a square root 
transformation of the vapour pressure values; 

Model 5 – identical with Model 4 but using a data set 
from which 3 suspect stations were removed.  

Model 6 – a bivariate spline where the effect of 
elevation was removed by bringing the observed 
vapour pressure values to a notional sea level 
pressure prior to the surface fitting.  
 
Model 6 was an attempt to determine whether the 

empirical fit of elevation-dependence achieved by 
ANUSPLIN was sufficient to account for an effect that 
could be explained by physical laws. Observing the 
Ideal Gas Law, each monthly vapour pressure datum 
was multiplied by an expression used to estimate the 
decrease in barometric pressure with elevation, using 
an equation provided by R.L. Snyder 
(http://biomet.ucdavis.edu/conversions/humidity_ 
conversion.htm)  

ea(0) = ea(z)/[(1.0 - 0.0065z/293.0)5.26] [2] 

where ea(z) was the vapour pressure reported at 
climate station elevation z.  

Besides assessments of the model diagnostics, 
models were evaluated by withholding 30 stations from 
initial runs. Following previous convention (Hutchinson, 
1995) the validation data were selected using SELNOT, 
part of the ANUSPLIN package. SELNOT identifies 
locations (data points) that maximize the Euclidean 
distance between the positions. Normally SELNOT is 
used to select stations (knots) for thin plate spline 
models with very large datasets. In this case the 

SELNOT algorithm was used to withhold 30 stations 
from the original dataset. These tend to be the most 
remote or extreme positions and hence generally 
critical to include in spatial interpolation models. 
Withholding these stations is therefore an exacting test 
and the Root Mean Square Error of these stations can 
be expected to be somewhat larger than the RTGCV. 
Locations of these and the remaining stations used for 
surface fitting are shown in Figure 1. Vapour pressure 
values were estimated at each of the locations of the 30 
withheld stations and compared to the observed values 
plotted for each month. These residuals are reported in 
terms of mean errors, root mean square error and as a 
percentage of the root mean square error calculated 
over the mean of validation data. The latter metric is 
commonly used to help evaluate precipitation models 
(e.g., Price et al. 2000). 

Maps of the fitted surfaces and their standard 
errors were generated using an ~ 10km digital elevation 
model (DEM) developed from the 1:250,000 scale 
national topographic data. (also available at: 
http://www.glfc.cfs.nrcan.gc.ca/landscape/topographic_
models_e.html ) 

4 RESULTS AND DISCUSSION 

Table 2 lists the Mean Error (ME) and Root Mean 
Square Error (RMSE) values obtained as the 
differences between observed and interpolated values 
for the 30 stations withheld from the analyses. The 
bivariate and trivariate thin plate splines (Model 1, 2, 3 
and 6) were inferior to the splines with the square root 
transformation (Model 4 and 5) in terms of their ME and 
RMSE. The square root transformation is appropriate 
because vapour pressure values are always positive 
and larger values tend to have larger errors. During the 
winter (December, January, February) values of ME 
ranged from 0.003 to 0.009 for Models 1 and 2, from 
-0.004 to -0.008 for Model 3, and from 0.001 to 0.002 
for Models 4 and 5. The RMSE values ranged from 
0.039 and 0.047 to 0.060 for Models 1 and 2, from 
0.052 to 0.064 for Model 3 and from 0.032 to 0.039 for 
Models 4 and 5. During the summer (June to August) 
the RMSE values for Models 4 and 5 ranged from 0.066 
to 0.077 compared to 0.087–0.099 for Model 1, 0.099–
0.114 for Model 2 and 0.080–0.093 for Model 3. 

An assessment of model accuracy was also made 
by calculating, for each month, the RMS residual of the 
validation data as estimated from the fitted surfaces not 
including these data. The RMS residuals were 
expressed as a percentage (PRMS) of the mean 
vapour pressure for the month over the validation data 
set. The superiority of Models 4 and 5 was emphasized 
by this metric presented in Table 3. The inclusion of 
elevation as a variable in Models 3, 4 and 5 generally 
improved the model fits compared to Models 1 and 2, 
as would be expected. Model 6, which adjusted for 
elevation effects prior to the surface fitting, also 
performed better than Models 1 and 2, and generally 
better than Model 3. For all six models the PRMS is 
higher in the winter than in the summer months. This 
might be explained by seasonal changes in 
continentality effects between coastal areas and central 
Canada.



 Model 1  Model 2  Model 3  Model 4  Model 5  Model 6 
Month ME RMSE  ME RMSE  ME RMSE  ME RMSE  ME RMSE  ME RMSE 

Jan 0.004 0.056  0.000 0.049  -0.006 0.064  0.002 0.039  0.002 0.039  0.008 0.038 

Feb 0.003 0.048  -0.002 0.042  -0.008 0.061  0.001 0.033  0.001 0.032  0.007 0.030 

Mar 0.010 0.047  0.006 0.037  0.001 0.052  0.009 0.027  0.009 0.026  0.015 0.032 

Apr 0.013 0.047  0.008 0.032  0.004 0.041  0.010 0.027  0.010 0.027  0.014 0.035 

May 0.008 0.066  0.001 0.051  -0.005 0.060  0.002 0.043  0.002 0.043  0.010 0.051 

Jun -0.007 0.099  -0.013 0.090  -0.017 0.093  -0.009 0.077  -0.009 0.077  -0.003 0.082 

Jul -0.021 0.096  -0.031 0.114  -0.019 0.089  -0.012 0.077  -0.012 0.077  -0.017 0.096 

Aug -0.007 0.087  -0.016 0.092  -0.015 0.080  -0.007 0.066  -0.007 0.066  -0.001 0.084 

Sep 0.004 0.068  -0.005 0.064  -0.010 0.067  -0.001 0.051  -0.001 0.051  0.006 0.067 

Oct 0.010 0.049  0.002 0.043  -0.006 0.053  0.001 0.038  0.001 0.038  0.012 0.048 

Nov 0.004 0.044  -0.004 0.038  -0.010 0.050  -0.004 0.035  -0.004 0.035  0.006 0.042 

Dec 0.009 0.039  0.004 0.042  -0.004 0.052  0.002 0.032  0.002 0.032  0.012 0.041 

 
Table 2. Summary of Mean Error (ME) and Root Mean Square Error (RMSE) for 30 stations withheld from analyses. 
 
 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Model 1 22.4 17.4 14.5 10.6 9.8 10.6 10.5 9.6 9.8 9.7 13.8 19.8 

Model 2 19.4 15.3 11.4 7.0 7.7 9.5 9.8 7.9 6.9 6.6 8.8 14.3 

Model 3 25.1 22.2 16.0 9.1 9.1 9.8 7.6 6.9 7.3 8.4 11.9 17.6 

Model 4 15.2 11.8 8.4 6.1 6.5 8.1 6.7 5.7 5.6 5.9 8.0 10.7 

Model 5 15.2 11.8 8.3 6.1 6.4 8.2 6.6 5.7 5.5 5.9 8.2 10.9 

Model 6 14.9 10.7 9.3 7.4 7.4 8.4 8.0 7.0 7.0 7.1 9.3 13.5 

 
Table 3. Percentage Root Mean Square Error for the 30 withheld stations.  

 
 

Table 4 lists the SIGNAL, surface mean, RTGCV 
and RTMSE for each model for all 176 stations (no data 
were withheld from these models). The residual 
degrees of freedom are slightly in excess of half the 
number of data points for Models 3 and 4, and less than 
half the number of data points for Model 1. For all 
models, the lowest signal is recorded in May and 
October and the highest in June, July and August, 
although model 4 is more balanced. As expected, the 
RTGCV values in Table 4 are somewhat smaller than 
the RMSE validation errors in Table 2. The RTGCV 
varies between .023 to .061 kPa for Model 1 and Model 
2, .022 to .052 kPa for Model 3, and .014 to .023 kPa 
for Model 4 and Model 5. The signals are slightly better 
for Model 5 than Model 4. In this application, all models 
appear to have performed reasonably well. The RTMSE 
varies from 0.011 to 0.030, 0.029 and 0.026 kPa for 
Models 1,2 and 3 respectively and from 0.006 to 0.011 

for Model 4. The RMSEs of Model 5 are similar to 
Model 4. These results in conjunction with the withheld 
data analysis (Tables 2 and 3) confirm Model 5 slightly 
outperforms Models 4 and 6, and hence is our preferred 
model.  

Table 5 shows the estimated and observed values 
for the three potentially anomalous stations withheld 
from the final Model 5. The greatest differences are in 
the summer months, although for most months the 
estimated values are quite close to the observed.  

Figure 2 shows the reduction in the data spread 
from the fitted function for each month for the 30 
withheld stations for Model 5 (see also table 2). The 
axes are the same for all months. As mentioned 
previously, the use of SELNOT to select the withheld 
stations ensures sufficient spread in the range of data 
values for each month. A random selection could result 
in a geographic bias in the withheld data.  
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Figure 2. Reduction in data spread for 30 withheld stations (observed versus estimated) from Model 5 – square root 
transformation with 3 suspected stations removed 
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 Model 1  Model 2  Model 3  Model 4  Model 5  Model 6 
Month Signal RTGCV RTMSE  Signal RTGCV RTMSE  Signal RTGCV RTMSE  Signal RTGCV RTMSE  Signal RTGCV RTMSE  Signal RTGCV RTMSE 
Jan 58.1 0.028 0.013 61.3 0.026 0.012  95.5 0.027 0.014 81.5 0.023 0.011  82.2 0.023 0.012 49.1 0.024 0.011 

Feb 56.8 0.023 0.011 61.1 0.020 0.010  94.0 0.022 0.011 87.1 0.018 0.009  88.0 0.018 0.009 48.4 0.019 0.009 

Mar 44.6 0.027 0.012 45.0 0.023 0.010  72.1 0.024 0.012 66.6 0.018 0.008  67.8 0.017 0.009 39.0 0.019 0.008 

Apr 61.1 0.027 0.013 60.6 0.022 0.010  94.4 0.022 0.011 83.1 0.014 0.007  86.6 0.014 0.007 60.2 0.016 0.008 

May 49.2 0.037 0.017 46.2 0.031 0.014  69.0 0.031 0.015 67.4 0.017 0.008  68.7 0.016 0.008 47.4 0.018 0.008 

Jun 65.4 0.051 0.025 61.5 0.046 0.022  114.9 0.044 0.021 115.7 0.021 0.009  106.7 0.020 0.009 65.1 0.022 0.010 

Jul 74.1 0.061 0.030 80.4 0.053 0.026  104.9 0.052 0.026 102.4 0.022 0.011  97.0 0.021 0.010 73.3 0.023 0.011 

Aug 56.8 0.058 0.027 60.6 0.048 0.023  159.5 0.044 0.013 155.2 0.019 0.006  145.7 0.018 0.006 55.5 0.021 0.010 

Sep 49.9 0.048 0.022 47.8 0.038 0.017  86.7 0.038 0.019 82.6 0.018 0.008  82.3 0.018 0.009 47.0 0.020 0.009 

Oct 47.9 0.038 0.017 44.0 0.031 0.013  69.3 0.033 0.016 66.4 0.018 0.008  66.4 0.018 0.009 43.7 0.019 0.008 

Nov 53.7 0.033 0.015 50.3 0.027 0.012  79.5 0.028 0.014 83.1 0.019 0.009  81.8 0.018 0.009 58.2 0.020 0.009 

Dec 60.7 0.030 0.014 63.7 0.026 0.012  96.6 0.026 0.013 92.1 0.021 0.010  90.6 0.021 0.010 61.1 0.023 0.011 

 
Model 1 – Bivariate model – function of longitude and latitude only (176 stations). 
Model 2 – Covariate model – function of longitude latitude, elevation as a covariate. 
Model 3 – Trivariate model – function of longitude, latitude and elevation (176 stations). 
Model 4 – Trivariate model – function of longitude, latitude and elevation with square root transformation of dependent variable and covariance file (176 stations). 
Model 5 – Trivariate model – function of longitude, latitude and elevation with three suspected stations removed  

(173 stations). 
Model 6 – Bivariate model – vapour pressure values adjusted to sea level prior to surface fitting. 
 
 

Table 4. ANUSPLIN diagnostics for six models using all data points. 
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 Station 1018610 
Victoria Gonzales Hts., B.C.  Station 1030426 

Amphitrite Point, B.C.  Station 8206240 
Western Head, N.S. 

Month Observed Estimated  Observed Estimated  Observed Estimated 

Jan 0.72 0.68  0.82 0.74  0.42 0.42 

Feb 0.79 0.73  0.79 0.78  0.40 0.40 

Mar 0.77 0.75  0.84 0.77  0.49 0.49 

Apr 0.85 0.83  0.88 0.84  0.63 0.66 

May 1.00 1.00  1.06 1.00  0.85 0.94 

Jun 1.18 1.18  1.23 1.19  1.10 1.30 

Jul 1.29 1.32  1.38 1.34  1.38 1.64 

Aug 1.33 1.34  1.45 1.41  1.44 1.66 

Sep 1.25 1.22  1.31 1.28  1.34 1.35 

Oct 1.07 1.02  1.12 1.07  1.06 1.00 

Nov 0.88 0.82  0.92 0.88  0.79 0.75 

Dec 0.77 0.72  0.76 0.78  0.53 0.51 
 
Table 5. Estimated and observed values for three stations withheld from Model 5 (n=173)  
 
 

Figure 3 is a visualization resolved on an ~10km 
grid resolution of each of the monthly surfaces. 
Seasonal patterns are quite evident with more 
complex patterns and higher values arising in the 
summer months. Higher values are evident for the 
fall, winter and spring months along the southern east 
and west coasts. Late spring, summer and fall months 
have higher vapour pressure values in the interior 
parts of the country. The highest values occur in July 
in the corridor between southern Manitoba and 
southern Ontario extending into the Maritime 
Provinces, due to the combined influences of the 
Great Lakes, the Corn Belt and possibly the storm 
tracks up from the Gulf and/or the Caribbean.  

Figure 4 provides the 95% model prediction error 
estimates for Model 5. The error estimates are 
generally highest in the summer months when values 
are higher and when greater spatial variation would 
be expected.  

5 CONCLUDING COMMENTS 

Several thin plate spline models of vapour 
pressure were developed for 1961-1990 monthly 
means calculated at 176 locations distributed across 
Canada. All models had reasonable signals with 
errors (estimated from 30 withheld stations) ranging 
from as low as 6% to at worst 25% for January for 
one of the models. The model selected for mapping 
had errors ranging from just 5.5% in September to 
15.2% in January. The examples show that the 
diagnostic procedures can detect subtle information 
about the nature of the spatial variation of the data. 
Three stations were removed from the final model that 
were short records and potentially anomalous. 
Applying the square root transformation to the data 
appears to have played a significant role in reducing 
interpolation error over all months. Hutchinson 

(1998a) found the square root transformation to 
provide a similar improvement in model accuracy 
when analyzing precipitation data. The final model 
that was mapped included all available stations 
except these three stations. The 95% Bayesian 
standard error estimates were also mapped and 
should provide useful insights to potential users.  

Further applications of thin plate splines to 
Canadian climate data are underway including 
research on the robustness of such models at 
different time steps and to other variables.  
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Figure 3. Monthly mean vapour pressure maps from Model 5 (see vapour pressure link at: 
http://www.glfc.cfs.nrcan.gc.ca/landscape/climate_models_e.html. for higher resolution maps) 
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Figure 4. Model 5, 95% prediction error estimates.
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