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1. Introduction 
 The major task of the project EVA-GRIPS (Regional 
Evaporation at Grid/Pixel Scale over Heterogeneous 
Land Surfaces) funded by  the German Ministry of 
Research and Education is the development of a concept 
to calculate area averaged evaporation and sensible heat 
fluxes over heterogeneous land surfaces for one pixe l of 
different  NWP models. Known concepts like the 
MOSAIC approach, the tile approach, the flux coupling 
approach and the application of effective parameters were 
implemented into standalone versions of the SVAT 
schemes TERRA of the Lokalmodell of the Deutscher 
Wetterdienst (DWD) and into that of the 
REMO/ECHAM model of the Deutsches 
Klimarechenzentrum (DKRZ).  
 
The latent and sensible heat fluxes derived from the 
SVAT schemes are currently compared with 
measurements of the heat fluxes taken around the 
Meteorological Observatory Lindenberg (MOL) of the 
DWD during the three LITFASS campaigns 1998, 2002 
and 2003. Area averaged heat fluxes are determined for 
the area around Lindenberg (Figure 1) between the 19th of 
May and the 17th of June 2003. Figure 2 shows the parts 
of the different land use  classes at the area around 
Lindenberg. 

 
 
Figure 1: Area around Lindenberg (south-east of 
Berlin/Germany). 
 
Here we show results obtained with the effective 
parameter approach: In order to simulate the heat fluxes 
with the SVAT schemes it is necessary to estimate 
appropriate values for all model parameters. Because not 
all parameters necessary to know for the input can be 
measured this approach allows to obtain the unknown 
parameters by minimizing objective functions describing 
the disagreement between the SVAT schemes and the 
measurements.  
 
 

 
Figure 2: Land use classes of the LITFASS area.  
 
2. Results 
2.1. Calibration 
 
To calibrate the SVAT schemes we applied the multi-
objective shuffled complex evolution algorithm 
MOSCEM-UA [1] of the University of Arizona to obtain 
global minima of independent objective functions.  
Here this algorithm is not only applied to the different 
classes of land use but also to the area averaged heat 
fluxes to estimate effective parameters for the whole area 
around Lindenberg which is used as example for one 
pixel of an NWP model.  
Table 1 lists the optimized parameters for each class of 
land use together with their abbreviations and ranges. 
 

FieldCapacity

SoilHeatCapacity

LeafAreaIndex

VegetationRatio

MaxStomataR

Albedo

RoughnessLength

1.0 ... 6.01LAI

250 ... 5000s/mMSR

0.0 ... 1.01VR

0.01 ... 0.8mRL

0.05 ... 0.351ALB

0.1 ... 0.9mFC

500 ... 5000Jkg-3K-1SHC

RangeUnit

FieldCapacity

SoilHeatCapacity

LeafAreaIndex

VegetationRatio

MaxStomataR

Albedo

RoughnessLength

1.0 ... 6.01LAI

250 ... 5000s/mMSR

0.0 ... 1.01VR

0.01 ... 0.8mRL

0.05 ... 0.351ALB

0.1 ... 0.9mFC

500 ... 5000Jkg-3K-1SHC

RangeUnit

 
 
Table 1: Optimized Parameters and their ranges. 
 
The algorithm determines the set of pareto-optimal 
objective function vectors of rank R. A vector x of 
objective functions is said to dominate (i.e. has a lower 
rank than) another objective function vector y if an i exist 
for all xi with xi<yi and for all i  xi<=yi is true. xi and yi are 
the elements of x respectively y. The pareto-optimal 
objective function vectors of rank 1 are non-dominated. 
The pareto sets for all land use classes together with the 
pareto set for the area averaged heat fluxes are shown in 
figure 3: To determine the objective functions only data 
with higher quality (i.e. quality fla g lower than 4) were 



used. As independent objective functions OF we used a 
modified Nash-Sutcliffe measure (optimum at 0) applied 
to the differences between the measured heat fluxes Qobs 
and calculated heat fluxes Qsim: 
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The algorithm allows to optimize N independent 
objective functions parallel. Here is N=2 for the latent 
and sensible heat fluxes.  
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Figure 3: Objective space for the LITFASS 2003 
parameter sets of the SVAT scheme of the 
REMO/ECHAM model with pareto rank 1 (calibration 
period). 

 
As example, figure 4 shows the norma lized parameter 
ranges for the pareto rank 1 set of barley compared with 
the SVAT scheme of the REMO/ECHAM model. It can 
e.g. be seen that the parameter leaf area index (LAI) and 
the maximum stomata resistance (MSR) vary over nearly 
the complete range within the best pareto set while the 
soil heat capacity (SHC) or the roughness length (RL) 
show smaller ranges. 
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Figure 4: Normalized parameter ranges for pareto rank 1 
sets for the measurements above barley compared with 
REMO/ECHAM. The parameter abbreviations are given 
in Table 1. 
 
2.2. Validation 
 
Figure 5 shows the objective space of the pareto sets with 
rank 1 for all classes of land use 2003 and the area 
averaged mean class applied to the validation period. The 
validation period is every 2nd day between the 19th of 
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Figure 5: Objective Space for the validation period 
(every 2nd day between the 19th of May and the 17th of 
June 2003). 
 
May and the 17th of June 2003. Similar results can be 
obtained by using the TERRA/LM model. 
 

 
 
Figure 6: Latent heat flux measurements above barley 
taken during LITFASS 2003 and compared with the 
range for all parameter sets with pareto rank 1 (first three 
days of the calibration period). 
 
Figure 6 shows the latent heat flux measurements above 
barley compared with the ranges between minimal and 
maximal latent heat fluxes as modeled with 
REMO/ECHAM for all parameter sets with rank 1. 
Similarly, Figure 7 shows the sensible heat fluxes. 
 

 
 
Figure 7: Sensible  heat flux measurements above barley 
taken during LITFASS 2003 and compared with the 
range for all parameter sets with pareto rank 1 (first three 
days of the calibration period). 
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