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1. Introduction

Winds in coastal areas are both important and
difficult to measure.  In recent years, radar has been
used to determine near-surface ocean currents; several
areas are currently instrumented with such radars.  One
of these is the Monterey Bay region in California where

such measurements began in the mid 1990s.
Additionally, objective analyses of wind fields have been
available from the U. S. Geological Survey for the
nearby San Francisco Bay area since before 1999
(Ludwig et al. 1997).  These two programs provide the
basis for the research described here.

Radar observations of ocean currents are not
directly related to winds, but the shear in surface
currents results from wind stress at the surface.  Current
shear can be estimated from radar measurements at
multiple frequencies (Meadows, 2002), making it

reasonable to consider such data for estimating winds.

Onshore anemometer data archived by the USGS
is concentrated around San Francisco Bay, but includes

several sites around Monterey Bay that can be used
with an objective analysis computer program to estimate
winds over the Bay.  Thus, we can compare wind fields
derived from the two types of data to see how the
inclusion of radar estimates of wind affect wind
analyses.  This paper describes an empirical method for
estimating winds from radar observations, and the
objective analysis of routine meteorological information.

Then, we compare results obtained by the two
approaches with observations and each other, exploring
how much effect there is when the two data sources are
used in tandem.

2. Methods

2.1 Measurement of ocean currents and winds

with high-frequency radar

High frequency (HF), or decameter, ground-wave
radar is useful for observing near surface currents in the
coastal ocean (e.g. Barrick et al. 1985).  The radars
detect currents, because constructive interference gives
returns almost exclusively from a single ocean
wavelength (Bragg waves of wave length half that of the

radar).  Oversimplifying, the radar deduces radial
current components from the difference between the
radar return’s Doppler shift and theoretical wave speed
(in the absence of surface current) for the observed
ocean wavelength.  Effective averaging depth depends
on the wavelength, with longer waves “feeling” the
current to greater depths.  Empirical relationships have

been developed between effective current depth and
wavelength (Teague et al. 2001).  Two radars observing
the same area of the ocean, with some straightforward
trigonometry, provide estimates of the two dimensional
current motion.  Here, we use data from two multi-
frequency coastal radars (MCR) measuring currents at
depths to a few meters below the surface.  MCR
systems are research tools built by a consortium:

University of Michigan, Veridian ERIM International,
Stanford University and University of California at Santa
Cruz.  They operate at 4.8, 6.8, 13.4 and 21.8 Mhz to
measure currents at effective depths of 2.5, 1.8, 0.9 and
0.6 m respectively.

Returns from waves moving toward the wind differ

from those moving away, causing asymmetry in radar
reflectivity that can be used to determine wind direction
(but not speed).  Among others, Long and Trizna (1973)
and Georges et al. (1993) developed methods for using
Bragg return signal strength difference ( S, dB –

receding minus approaching) to estimate wind direction
relative to radar line of sight ( , degrees).  We use the

relationship developed by Georges et al. (1993) :
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Winds toward the radar ( =180°) or away from it

( =0°) have no ambiguity, but Equation 1 gives two

possibilities for other directions, e.g. when S=0 dB,

wind direction will be at right angles to the look direction,

either from the right or left.  Vesecky et al. (1998), using
Eq. 1 with Monterey Bay MCR data demonstrated that
this ambiguity can be resolved if two radars view the
same area from substantially different directions.  They
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estimated directions that generally agreed with surface
wind analyses using conventional meteorological data.

Steady-state conditions (admittedly infrequent)
produce wind profiles and ocean current profiles that are
related to the friction velocity at the surface.  According

to Meadows (2002), the air friction velocity (u*a) is

related to the friction velocity in water (u*w) through the

ratio of air/water densities ( a/ w).  The equation is:

u w
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Seawater density ( w=1025 kg m
–3

) is used to get the

constants in Equation 2, but the result is essentially the

same for fresh water.  It should be possible to determine

u*w from the MCR current profile, then determine u*a

from Equation 2.   Hasse and Weber (1985) show how

wind speed and u*a. are related.  They use a drag

coefficient of 1.3 10
–3 

and showed that the wind speed

at 10 m, u10 28u*a.  Substituting in Equation 2, then

gives

u10 840u w       . (3)

The preceding discussion suggests that there is enough
information to estimate wind speed and direction directly
from MCR observations, but it has been difficult.

One reason for the difficulties may be the slow
response of surface currents to wind changes.  We
sought a statistical approach that uses MCR information

in a way that might account for this slow response of the
sea.  The approach adopted below uses the MCR
vector currents for all effective depths and the Bragg
line ratios as a training data set for the method of Partial
Least Squares (e.g. StatSoft 2004).  The result is an
empirical estimation method for speed and direction,
derived from in situ buoy measurements that could be
tested against a separate ‘validation’ data set from the

same location.

Figure 1 locations of marine labs ( ), M1 and NPS
buoys ( ), land stations (X), locations used for
wind estimates ( ); 200 m contours.

Many available radar parameters can be
considered for input into a statistical scheme, especially
when there are two, four-channel Doppler radar systems

in the Monterey Bay area (at Long Marine Laboratory,
LML and Moss Landing Marine Laboratory, MLML), as
shown in Figure 1.  Parameters measured at each
range bin for each radar channel are: signal return 1)
from approaching waves, 2) from receding waves and 3)

Doppler shift from the radial current component.  The
two radars give 24 primary parameters (3 parameter
values  2 radars  4 channels) that can be used

directly, or converted to S (Eq. 1) and current

components (or current speed and direction) at different
depths.  After some experimentation, the 52 parameters
listed in Table 1 were chosen.  They include both
current measurements and Bragg line ratios; there is
considerable redundancy of information, e.g. the current
speed and direction is equivalent to U (eastward) and V
(northward) components, and the directions relative to
look direction come from Equation 1.

Tobias (1995), says this type of problem, with
many input variables conveying similar information, and
poorly defined relationships with desired parameters, is

well suited to Partial Least Squares (PLS) regression.
The following brief description is largely based on
Tobias (1995) and StatSoft (2004), especially the latter.
Ordinary multiple linear regression relates a set of
dependent variables Y (a matrix of n  cases by m
variables) to the independent variables X (n cases by p
variables) using a model of the form Y=XB+E; B is a p
by m  matrix of regression coefficients, and E is an error

matrix with the dimensions of Y .  This derivation
assumes that variable means have been subtracted
from each value, and then scaled by the standard
deviations to give a set of variables centered on zero,
whose ranges of values are approximately equal in
magnitude, but unscaled, uncentered variables can
beused, and they proved to be. more robust in our
application.

TABLE 1 PARAMETERS FOR PLS ESTIMATES

Parameter

ID

Site(s)

used
Parameter

1 - 4 MLML
U (northward) component of
radial vector – cm s

–1

5 - 8 LML
U (northward) component of
radial vector – cm s

–1

9 - 12 MLML
V (eastward) component of

radial vector – cm s
–1

13 - 16 LML
V (eastward) component of
radial vector – cm s

–1

17 - 20
LML &
MLML

U (northward) component of
current – cm s

–1

21 - 24
LML &

MLML

V (northward) component of

current – cm s
–1

25 - 28 MLML Radial current speed – cm s
–1

29 - 32 LML Radial current speed – cm s
–1

33 - 36
LML &
MLML

Current speed – cm s
–1

37 - 40
LML &

MLML
Current direction – degrees

41 - 44 MLML Line ratio, DS – dB (Eq. 1)

45 - 48 LML Line ratio, DS – dB (Eq. 1)

49 - 52 MLML Estimated Wind Direction (°)
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There is no inherent reason why ordinary multiple
linear regression or principal component analysis (PCA)
could not be used, but they require many more data
sets than parameters to be effective; we know that
many of the 52 variables in Table 1 are correlated and

we have only a small data set from which to develop the
regression equations, so there is substantial risk that
conventional regression will perform well only for the
data set from which it has been derived.  Even
approaches like PCA that eliminate correlation between
variables to reduce the number of parameters required
to describe the dependent and independent variables
need a large data set.  PLS overcomes these problems.

According to Statsoft (2004), a new optimal
variable set T  (n  by c  matrix) can be derived from
linearly weighted combinations of the original predictors

(T=XW).  The new predictors T are uncorrelated, and W
is a p by c weighting matrix, with c  p.  In practice, the
number of new variables c will be fewer than the original
number p when the number of cases is fewer than the
number of variables, or when there is appreciable
covariance among variables.  Skipping how the
weighting matrix W  is determined, a new linear
regression model Y=TQ+E can be derived for the new

predictor variables.  Here, Q  is a c  by m  matrix of
regression coefficients for T versus Y, and E is the error
matrix for this regression.  Once we have computed T
and Q, a regression equation can be derived with the
same form as the original.  Then the new model used to
estimate wind components is:

Y=XB+E       , (4)

where B=WQ is determined from a subset of the data

and tested against the remaining cases.

StatSoft (2004) notes that the difference between

principal components regression and PLS regression
lies in the way that the T  and W  matrices are
determined.  Principal component regression uses the
covariances between the independent variables, i.e.
from the cross-product matrix X´X ; PLS uses the
covariances among both dependent and independent

variables by working with the matrix Y´XX´Y.  The prime
denotes a transpose matrix.  The details of algorithms
used for extracting the regression coefficient matrix
B=WQ are given in StatSoft (2004).  Although the form
of Equation 4 is essentially the same as that for ordinary
multiple regression, PLS regression gives more robust
coefficients by using new, uncorrelated intermediate
variables in their derivation.

As noted, the PLS algorithm was applied to a
subset of data, called the ‘training’ set.  In this case, we
used about two-thirds of the available data taken over

one month for training.  The resulting PLS prediction
model was applied to the remaining data.  This is a
small data set from a single location, so the results must
be considered preliminary.

2.2 Objective analysis with the Winds on Critical

Streamline Surfaces (WOCSS) methodology

The Winds on Critical Streamline Surfaces
(WOCSS) methodology (Ludwig et al. 1991) provides

objective analyses of wind observations that account
for the fact that stable layers in the atmosphere
suppress vertical motions and force air flow around hills
and ridges, rather than over them.  Briefly, the WOCSS
code defines surfaces on which flow should take place,

given that there is a maximum height to which the
kinetic energy of the wind can lift a parcel of air in a
stably stratified atmosphere.  The maximum height is
based on the critical dividing streamline concept, and
assumes that air parcel vertical displacement in
complex terrain balances the original kinetic energy of
the flow at low altitudes, and the energy required to
change altitude in the presence of a buoyant restoring

force (see e.g. Sheppard 1956; Hunt and Snyder 1980;
McNider et al. 1984).  This energy constraint leads to a
relationship among potential temperature lapse rate
(d /dz), the maximum height to which the air can rise

(Z
max

), and the low-altitude wind speed V
0
 at the lowest

height (z
0
) for a particular low surface:

Zmax – z0 = V0
g

T 

d

dz

 

 
 

 

 
      . (5)

T  is the mean temperature between z
0
 and Z

max
, and g

is the gravitational constant.

The low altitude wind speed V0 is defined from

winds first interpolated to terrain-following surfaces.
Equation 5 determines the maximum height for  each of
a number of flow-following surfaces, which may
intersect the terrain when the atmosphere is stable.  A
second interpolation defines winds on the new surfaces.

Then, these “first guess” winds are iteratively adjusted
to reduce two-dimensional divergence on the flow
surfaces.  Winds are set to zero where the flow surfaces
intersect the terrain so the iterative adjustments force
flow around the terrain obstacles.  The code also
includes provisions so that the presence of a stable
layer at one altitude will influence flow at levels above
and below that layer.  The method performs well when

there is adequate input data (Bridger et al. 1994; Ludwig
and Sinton 2000).  The stations within the domain used

for the WOCSS analyses are marked ( ) in Figure 1;

stations outside the area were also used, but were
weighted less heavily.

3. Observations

3.1 HF radar locations and operation

MCR’s are located at the University of California at
Santa Cruz’s LML and at California State University’s
MLML (Fig. 1).  The Monterery Bay Aquarium Research
Institute (MBARI) collects wind speed and direction data

from two buoys, one (M1 buoy) is located in the radar
coverage area shown in Figure 1.  It has gathered data
since 1992.  These results reported here used data
collected at M1 from early December 2000 to early
January 2001.  Data from a Naval Postgraduate School
(NPS) flux buoy (Fig.1) were not used, but are available
for later analysis.
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Radar data from LML and MLML were processed
using beam-forming techniques to yield Doppler spectra
that were processed by automated algorithms to get
radial currents and the power ratio between the
advancing and receding Bragg line peaks (Laws et al.

2000).  The parameters in Table 1 were used to get
wind estimates at the locations marked by  symbols in
Figure 1.  Signal-to-noise ratio (SNR) must be 5 dB
from both radars for wind directions to be estimated, so
data are not always available from all the locations
shown in Figure 1.  Generally, there are more usable
data from the middle points.  Points in Figure 1 are
numbered by row, with the point number at the

beginning of each row shown in the Figure 1.  The
number of hours for which estimates could be compared
with WOCSS analyses is shown in the histogram of
Figure 2.  Different shading is used for the bars in the
different rows.  The number of available cases at any
given point depends on simultaneous availability of high
SNR radar data and sufficient meteorological
information for WOCSS analysis.
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Figure 2 Frequencies of wind estimate availability from
the locations shown in Figure 1; each row
beginning is identified by its point number.

3.2 Conventional meteorological observations

Inputs required for WOCSS analysis are surface

winds and at least one temperature and wind sounding.
Soundings are not widely available, either in space or
time; we were forced to use the 0000 UTC and 1200
UTC soundings from Oakland, about 100 km north of
the center of Monterey Bay.  The available surface
observations were not ideal, having been collected for

the purpose of estimating winds around San Francisco
Bay, but there were usually at least a few sites to the
south and east of Monterey Bay, as well as the more
numerous sites inland and to the north.  The dearth of
available stations is an important reason for developing
other ways to observe winds.

4. Results

The results obtained with the PLS technique are
summarized in Figures 3 and 4.  Figure 3 shows scatter
plots of PLS values of wind speed versus those that
were observed.  Figure 4 presents the results for
direction.  In both figures, the training and independent

data sets are shown.  The results show that multi-
frequency HF radar provides good estimates of hourly
average winds at the MBARI buoy.  Table 2 shows the
regression constants and correlation coefficients for the
u and v components, and for speed and direction.  The

correlations are quite high, > 0.7 in all cases.
Furthermore, the performance on the independent data
is essentially the same as for the training set, which
suggests that the method is robust.

Table 2 also shows the same information for

estimates based on the WOCSS objective analyses.  It
is obvious that objective analysis alone does not specify
the wind at the MBARI buoy very well.  As expected, the
estimates are improved when the radar wind values are
included among the inputs for the objective analysis.
However, the WOCSS analyses with MCR winds are

still not as good as those from the MCR alone.  The
reason for this is that the first guess fields used in the
objective analyses are derived from inverse distance
(squared) weighted interpolation, which results in
considerable smoothing.  The wind at any point is
heavily influenced by other nearby winds, which may
differ from the actual wind at the point.  With no terrain
features in the bay, iterative adjustments do not

significantly change the first guess winds.  This artifact
also explains the poor estimates at the buoy when
WOCSS only uses onshore observations.  The winds
over land tend to be weaker than over the Bay, resulting
in pronounced underestimation of wind speed.
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Figure 3 Scatter plots  and regression lines of observed
wind speed versus PLS estimates for the
training and independent data sets.

One of the questions we sought to answer was
whether or not the objective analyses would be changed

much by the availability of MCR winds.  Figures 5 and 6,
respectively  show the differences in average direction
and speed (WOCSS with MCR inputs minus WOCSS
without).  The direction differences, on average are
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small, less than ±15° everywhere.  West of the Bay, the
directions are rotated counterclockwise (CCW) by the
MCR observations.   The CW  rotation  near Watsonville
suggests that the Monterey Bay winds are usually a little
different from those at Watsonville, so there is a change

when the interpolation includes the Bay winds.

Figure 4 Scatter plots  and regression lines of observed
wind direction versus PLS estimates for the
training and independent data sets.

TABLE 2 Regression parameters and correlations for
different wind estimates

Figure 6 shows that the availability of MCR winds
changes the speeds substantially over that part of
Monterey Bay covered by the radar.  The MCR wind
speeds are as much as 2.5 m s

–1
 greater than what was

derived from onshore observations.  This is a significant

difference.  For the most part, the onshore speeds are
not much affected.  However, it should be noted that
throughout the domain, the average wind speeds are
increased by the use of MCR winds.  This is the result of
the aforementioned artifact of inverse distance weighted
interpolation.   In  this  case, the presence  of  numerous
observations of higher wind speeds over the bay is felt
even at the locations onshore.

Direction Difference (with radar – without) – deg
-15 -10 -5 0 15105

Figure 5 Distribution of the differences in average
WOCSS estimates of wind direction with MCR
inputs minus those without.

Figure 6 Distribution of the differences in average
WOCSS estimates of speed with MCR inputs
minus those without.

Parameter at
M1 buoy

Intercept,
a

Slope,
b

Correlation
coefficient

PLS Training set:

u – m s
–1

–0.0 1.00 0.91

v – m s
–1

–0.7 0.80 0.72

Speed – m s
–1

1.3 0.84 0.85

Direction – ° 14.4 0.92 0.95

PLS independent set:

u – m s
–1

–0.2 0.98 0.92

v – m s
–1

–0.5 0.98 0.76

Speed – m s
–1

1.0 0.94 0.82

Direction – ° 3.1 1.02 0.94

WOCSS with MCR:

u – m s
–1

–1.2 0.96 0.85

v – m s
–1

–0.7 0.77 0.46

Speed – m s
–1

1.3 0.93 0.59

Direction – ° 21.1 0.90 0.89

WOCSS without MCR:

u – m s
–1

–3.1 2.28 0.85

v – m s
–1

–1.0 1.42 0.37

Speed – m s
–1

4.4 0.25 0.08

Direction – ° 23.7 0.97 0.80
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5. Discussion

The results presented here are preliminary.  The
PLS method should be applied in other places and to
larger data sets.  More experimentation should be done
with regard to the variables used for the predictions.

Regardless of the shortcomings, these results provide
strong evidence of the worth of MCR observations for
estimating winds.  They also provide an incentive to
pursue the work further.

Finally, it can be said that the MCR winds do affect

objective wind analyses, especially over Monterey Bay.
The MCR winds provide information about the higher
speeds over the water that would be very difficult to infer
in their absence.
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