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1 INTRODUCTION

The pure convective boundary layer (CBL) occurs in
the atmosphere typically during windless sunny days. It
consists of a well mixed convective region, a capping
inversion and stably stratified air aloft. The turbulent
kinetic energy (TKE) flux makes the stable fluid to be
entrained into the mixed layer producing a negative heat
flux that depends on the surface heat flux, the initial and
the boundary conditions. Turbulent flows are often
modeled with a Reynolds stress approach. In the CBL
the characteristics of the turbulence are mainly non-
local, thus the prognostic equations of all second-order
moments (SOMs) with realistic third order moments
(TOMs) are required. This kind of models is computa-
tionally too expensive to be implemented in operational
models. Therefore lower order models are usually pre-
ferred. Turbulence closure models can be simplified by
invoking: downgradient approximation of the TOMs,
isotropy of TKE, downgradient approximation of tem-
perature flux and the parameterization of the mixing
length through a diagnostic formulation. Here these
successive simplifications are applied in this order. If
the first three simplifications are applied, the model is
called E - €. When the last is also applied it is an E-
£. This two last models, of the first order, are simple
enough to be used in the operational models. The aim
is to understand the conseguences of these simplifica-
tions. Moreover the formulations of the mixing length
and the e equation in the first order models are modified
in order to try to reproduce the results of the third order
model.

2 THE MODEL EQUATIONS

The dynamical equations for the first and second order
moments are (Canuto (1994), hereafter C94),
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where © is the mean potential temperature, § =
—00/0z, A = ga, g is the acceleration of gravity and
a is the volume expansion coefficient and ¢? is twice
the TKE (¢2 = w? + 2u2).  The pressure correlation

terms are modeled with the following expressions:
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The return-to-isotropy time scale is modeled as:
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where 7 is the turbulence time scale (7 = ¢2/¢), N2 is
the Brunt-Vaisala frequency (N? = —gaf3) and the last
term of (7) is pw = —awq?. The dissipation of TKE is
modeled as:
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Prognostic Third order moments (PT) The
TOMs dynamical equation, taken from C94 and not
re-written here, are based on the quasi-normal approxi-
mation of the fourth order moments.

3 SIMPLIFICATIONS

Model Third order moments (MT) In the sta-
tionary case the TOMs dynamical equation become a
linear system of equations that can be inverted result-
ing in an analytic model for the TOMs. For the TOMs
model it is possible to refer, another time, to C94. The
same closure constants will be used also in the models
with the other simplifications. Different parameteriza-
tions of the TOMS was tested too: the Zeman Lumley



(as reported in C94) TOMs, that are similar to C94 ones
but neglect some of the dependecies on the SOMs gra-
dients, and Canuto (2001) TOMs, that avoid the quasi-
normal approximation of the fourth order moments.
Downgradient Third order moments (DT) In
C94 the TOMs are linear combinations of all the SOMs
gradients; downgradient approximation of a TOM, that
is the flux of a SOM, can be achieved by neglecting its
dependency on all the other SOMs gradients.
Isotropy of TKE (IT) It is possible to derive the
equation for ¢2 from egs. (4) and (5). The result is
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This is used instead of the egs. for w? and u2, that are
now defined as w? = u2 = ¢2/3. These values are used
for the TOMs computation without any changing in the
TOMs model.

Downgradient Heat flux (DH) Downgradient ap-
proximation for the temperature flux can be achieved
from the analytic solutions of the system composed by
egqs. (2) and (3) after neglecting their non-stationary
and non-local terms. The result is
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diagnostic Mixing Length (ML) The use of the
prognostic equation for the TKE dissipation can be
avoided by prescribing an analytical mixing length, that
is linked to the TKE and to the TKE dissipation by the
Kolmogorov relation
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Here a non-local formulation in the mixed layer and
the Deardorff formula in the stable region like those in
Cuxart (2000) are used
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where [, and l4o,n are the distance between the level
in which the mixing length is computed and the ground
or the inversion (z;) respectively, and ¢, (~ 0.5) is an
adjustable parameter.

NUMERICAL SOLUTIONS AND RESULTS

Here Deardorff (1985) experiment, that is a classical
CBL case study, is simulated in order to check the model
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Figure 1: Temperature profiles after 600 sec. Continu-
ous line: PT; dashed lines (from bigger to smaller seg-
ments): CT, DT, IT; dash-dotted line: DH (E-e model);
dash-dot-dotted line: ML (E-£ model).

reliability trough the comparison with the results of C94.
This is useful also because C94 showed that the results
of the model that here is called MT are in good agree-
ment with the LES ones. For the actual implemen-
tation and boundary condition it is possible to refer to
the same paper. There are differencies in the specifica-
tion of the lower boundary conditions, because here any
computational level below ground is used, and proba-
bly in the numerical implementation, that can explain
the differencies that are found between this and C94's
results.

Effects of the Simplifications

Fig.1 shows that the forecasted temperature at the
lower boundary is comparable in all the models, while
differencies are found mainly in the upper mixed layer
and in the entrainment region: the models can be split-
ted into two classes, PT and MT give almost the same
results, because the system is quasy-stationary, while all
the others, based on the DT simplification, produce a
shallower mixed layer, with lower temperature values at
the top, and more stable layer aloft. In the models with
DH simplification the mixed layer stratification is unsta-
ble, in order to mantain the upward heat flux. =~ From
fig.2 it comes out that the models with the DT simpli-
fication underestimate the magnitude of the inversion
and produce a shallower entrainment region respect to
the PT and MT models. This different heat budget
explains the differences in the mixed layer temperature
shown in fig.1. The difference in the intensity of
the entraining process is explained by fig.3, that shows
that the class of models with the DT simplification un-
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Figure 2: Same as fig.1, but for the normalized tem-
perature flux.
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Figure 3: Same as fig.1, but for normalized TKE.
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Figure 4: Same as fig.1, but for the equivalent mixing
length, (obtained using the Kolmogorov relation (15)).
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Figure 5: Same as fig.1, but for the normalized tem-
perature flux of the flux.

derestimate the TKE in the entrainment region while
overestimate it in the mixed layer.  Fig.4 shows that
DT and MT models produce a maximum of equivalent
mixing length located an upper portion of the mixed
layer. This corresponds to a maximum of u? that rep-
resents the strong horizontal mixing due to the eddies
splattering effect as they reach the inversion. Fig.5
shows that DT and MT models produce, in the entrain-
ing region, a negative peak of temperature flux of the
flux that is missed by the models with DT simplification,
in which this variable is always positive. In this latter
models the resulting TKE flux (not shown) is negative
in the lower part of the mixed layer, while it is always
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Normalized temperature flux profiles after
600 sec. TOMs by Zeman Lumley (as reported in C94),
continuos line; C94 and Canuto (2001), dashed lines
with bigger and smaller segments, respectively.

Figure 6:

positive in the DT and MT models.

Comparison among TOMs models

Different parameterizations of the TOMS was tested
too (fig.6). Here it is not intended to give a full descrip-
tion of this results but only to stress the fact that the
model can be also very much sensitive of the different
TOMs parameterizations. Even bigger difference can be
found in the other fields, not presented here.

Trying to set the ML and the ¢ Equation

It is possible to try to recover the full model

fenomenology with the simpler first order ones by set-
ting the ML or the e equation till the resulting equivalent
mixing length profiles (see fig.4) are close to PT one.
This can be done, in the first case, by defining the mix-
ing length, below the inversion, as £/ = ¢;(lupl3, ) "%,
while, for the € equation, by simply reducing its tur-
bulent trasport (i.e. multiplying the Zeman coefficient
Ap by 0.55) (¢'). In fig.7 it is shown the results for
the temperature flux profile. There is an improving,
but the temperature profile (not shown here) is almost
uneffected.

4 CONCLUSIONS

From the third order CBL model successive simplifica-
tions are applied till the model is formally equivalent to
the E-e and the E-£ models and their results are com-
pared. The most critic simplification is the downgra-
dient approximation of the third order moments that
cause the underestimation of the magnitude and the of
height of the inversion. All the models that make use

Figure 7:  Normalized temperature flux profiles after
600 sec. Continuous line: PT; dashed lines (from bigger
to smaller segments): E-¢, E-¢, E-£’; dash-dotted line:
E-¢'; (explanations in the text).

of this approximation give similar results. The results
are also very much sensitive to different TOMs param-
eterizations. There is no simple way to reproduce the
third order model fenomenology with first order models
by acting on the ML or the € equation.
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