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1. INTRODUCTION

During DYCOMS-II (the second DYnamics and Chem-
istry Of Marine Stratocumulus field experiment), the
stratocumulus-topped boundary layer (STBL) was probed
off the coast of southern California, in order to better un-
derstand the physics and dynamics of the persistent stra-
tocumulus found there during summer (see the overview
of the resources and objectives of this experiment pre-
sented by Stevens et al (2002)). While the NCAR C-
130 aircraft was flying 60 km diameter quasi-Lagrangian
circles at different levels in the STBL and in the over-
lying free troposphere, the 95 GHz (3 mm wavelength)
WCR observed the cloudy atmosphere below with two
downward-looking beams. The high rate sampling of the
Doppler velocity measurements allowed us to attempt to
study the turbulence characteristics (see 6.4 extended
abstract).

Since the scatterers observed by the WCR are hy-
drometeors, the radial velocity measured by the radar is
equal to the radial component of the air velocity plus the
radial component of the fall velocity of these scatterers.
The variance of a time series of mean Doppler velocity
measured with the vertical beam can thus be written:

σ2
vr

= σ2
w +σ2

vt
+2cov(w,vt), (1)

where σ2
w and σ2

vt
are the contributions to the total fluctu-

ations of the Doppler velocity due respectively to the air
vertical velocity and to the terminal fallspeed of the scat-
terers, and cov indicates the covariance. By convention,
w and vt are taken negative downward. Our aim here is
to estimate the fluctuations of the reflectivity-weighted fall
velocity σ2

vt
, a crucial step in the study of turbulence using

the WCR Doppler velocity measurements.
We propose a way to directly estimate the terminal

fall velocity variance from the drop counts in stratiform
clouds, using the in situ microphysics probe measure-
ments. The combination of in situ microphysics probe
and airborne radar measurements during DYCOMS gave
us an excellent opportunity to attempt it.
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2. METHOD

To study the spatial distribution of the drops (here we
define drops to include all hydrometeors), we used the
FSSP-100 (Forward Scattering Spectrometer Probe) for
the small cloud droplets (2-47 µm), and the 260X 1D
probe (10-640 µm). Both the FSSP-100 and the 260X
probes had a sampling period of 0.1 s. The sparsity of
the drizzle drops (200 µm to 500 µm), when observed
with a microphysical instrument, makes it impossible to
directly analyze the time series of the reflectivity-weighted
fall velocity and deduce its turbulence structure. For a 1
s period and at an airspeed of 100 m s−1, the sampling
volume of the 260X probe is about 1 L and the concen-
tration of the 200 µm drops is around 0.1 L−1 for a 10 µm
bin width. These larger drops, however, play a crucial role
in the reflectivity and Doppler velocity signal, because the
reflectivity is proportional to the sixth moment of the drop
diameter. Because of sampling volume issues, a more
global statistical point of view is necessary to estimate
the fluctuation in the reflectivity-weighted fall velocity.

The distribution of drops measured by the PMS probes
is determined by two factors: the first is a result of the
finite number of drops counted by the probe in each time
interval and the second comes from real heterogeneities
in the structure of the cloud. If the drop concentration
was uniform with drops randomly distributed in space,
a homogeneous Poisson distribution would be expected.
However, the concentration varies in space and time. The
counting is therefore a generalized Poisson process, i.e.,
the counting rate varies along the flight path. Thus the
observed distribution results from the combination of ran-
dom counting statistics for a homogeneous distribution
and real spatial variability in the drop time series, due
to physical processes in clouds. The latter variability is
needed in order to estimate the fluctuation in the fall ve-
locity measured by the Doppler radar. We use the de-
parture of the observed distribution of drops from a ho-
mogeneous random Poisson distribution to estimate the
variance of drop counts due to physical processes and
to deduce the corresponding variance of the reflectivity-
weighted fall velocity.

Assuming that the two processes described above are



independent, the variance in counts measured by a PMS
probe in a particular bin i should be equal to the variance
due to the statistical Poisson process plus the variance
due to the physical cloud processes:(
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)
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+
(
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)
phys

. (2)

Determining the set of

(
σ2

ni

)
phys

for all the bins will

enable us to estimate the contribution σvt of the drop
fallspeed to the Doppler velocity fluctuation. The Pois-
son sampling variations are taken as zero for the much
larger radar volumes; furthermore, variations in the in
situ-derived reflectivity and fall velocity are assumed to
be representative of what the radar measures over the
same averaging length.

In the next section, we present the in situ measure-
ments and discuss the observed departure from Poisson
statistics. We show that the observed count distribution
can be modeled by a generalized Poisson distribution,
that would have a lognormally distributed counting rate.
Then we give estimates of the variance of the reflectivity-
weighted fall velocity deduced from the non-Poisson vari-
ance of the counts.

3. MODELING THE COUNT DISTRIBUTION
OBSERVED BY A PMS PROBE

3.1 Observed count distributions

The data presented in this paper were collected dur-
ing flight RF07, which had the most uniform distribution
of drizzle among the nine DYCOMS flights (Van Zanten
et al., 2004). Eight legs probed the STBL, two at each of
the four levels flown: near cloud top (CT1 and CT2), just
above cloud base (CB1 and CB2), between cloud base
and the surface (SC1 and SC2) and 95 m above the sur-
face (SF1 and SF2). The height of the legs, cloud base
and cloud-top heights are listed in Table 1. Each leg con-

GPS altitude (m.s.l)
Cloud base 275
Cloud top 825

CT1 712
CT2 677

CB1 and CB2 448
SC1 and SC2 230
SF1 and SF2 95

Table 1:Height of cloud top, cloud base and of the legs flown
during flight RF07 of DYCOMS-II

sisted of a 60 km diameter circle flown within about 30

minutes. At each level, circles were flown both clockwise
and anti-clockwise. The drop size distributions observed
were bimodal (Van Zanten et al., 2004). One mode was
composed of the small cloud droplets with a median di-
ameter of about 20 µm and the other of larger drops, in-
cluding drizzle, with a median diameter of about 100 µm.
The small cloud droplet concentration was as much as
105 times larger than the drizzle concentration at cloud
top but more like 102 times larger in the sub-cloud region.
We mainly used the 260X measurements because the
contribution of the small cloud droplets (measured with
the FSSP-100) to the reflectivity turned out to be negligi-
ble. Drizzle was prevalent during this flight and made the
largest contribution to the observed reflectivity and the
reflectivity-weighted fall velocity. The counts were accu-
mulated over a sampling interval of 2 s (about 200 m) as
a compromise between obtaining a sufficient count rate
and resolving turbulence structure. Both legs at each
level were used together, so that the number of sampling
intervals (Ndp) was 1800.

Figure 1 displays the frequency of counts per 2 s period
observed for the 115 µm channel of the 260X probe on
the CB leg, along with the frequency of counts expected
for a Poisson distribution of the same rate (the rate n is
the ratio of the total number of events to the number of
sampling intervals). The measured distributions depart
from a Poisson distribution. A standard test based on the
chi-square distribution (Hogg and Tanis, 1993) allowed us
to quantify the significance of this departure and reject
the null hypothesis that the counts are Poisson-randomly
distributed at the 1% significance level.

The departure from Poisson randomness can also be
quantified using the clustering index (i.e Barker,1992):

CI =
(δn)2

n
−1, (3)

where (δn)2 is the variance of the counts. Since the vari-
ance and the mean are equal for a Poisson distribution,
CI= 0 for Poisson statistics. Positive CI implies a more
clustered distribution while negative CI implies a more
uniform distribution than Poisson. Table 2 displays the
characteristics of the count distribution for the 195 µm
channel with a 2 s sampling interval. The clustering in-
dex we observe is positive, consistent with the excess
of ‘zero count’ events relative to the Poisson distribution,
along with a depletion of one and two count events, dis-
played in Fig. 1.

3.2 Modeling the observed distribution

Here we show that the departure from Poisson statis-
tics discussed above can be explained by a lognormal
spatial distribution due to physical processes. Therefore,



Figure 1: (a) frequency of counts observed (shaded) at 2 s
sampling time interval in the 115 µm channel of the 260X probe
for CB, along with the frequency of counts expected for a Pois-
son distribution with the same mean number of counts per sam-
pling time interval (unshaded). (b) observed minus expected
Poisson probability density function (times 100).

LEG λ Ntot n (δn)2 CI
CT 0.116 209 0.247 0.423 0.71
CB 0.131 236 0.660 1.393 1.11
SC 0.144 260 0.305 0.405 0.33
SF 0.065 111 0.137 0.219 0.60

Table 2:Characteristics of the count distribution for the 195
µm channel, at the 4 levels probed during flight RF07 and for
a 2 s sampling period.λ is the mean count rate (s−1), Ntot is
the total number of counts,n is the mean number of counts per
sampling period,(δn)2 the variance of the counts and CI is the
clustering index (equation (3)).

we make use of the concept of a doubly stochastic pro-
cess to describe the Poisson random sampling of counts
which, in addition, have a spatial distribution due to cloud
heterogenities, in order to model the distribution observed
by the microphysics probes. This concept is similar to the
‘Poisson mixture’ approach used by Kostinski and Jame-
son (1997), but we assume a lognormally varying Pois-
son distribution (LVPD). The model we propose to explain
and quantify the departure from a Poisson distribution is
based on the assumption that, instead of a constant rate
ni , the expected count distribution in each size bin i has a
variable rate with a lognormal distribution. The variance
σ2

ni
of this lognormal distribution characterizes the vari-

ance of the actual heterogeneities of a particular bin. We
can then quantify the variance of the overall fall velocity
obtained from all the bins as described in the next sec-
tion.

At low sampling rates (i.e. large drops), the mean num-
ber of counts per time interval may be very small (see
Table 2), so a Gaussian distribution is not appropriate be-
cause of negative values. Our choice of a lognormal dis-
tribution differs from the exponential distribution chosen
by Kostinski and Jameson (1997) for raindrops. However,
the lognormal distribution has previously been used to de-
scribe scalars in the atmosphere (e.g.,Hogan and Illing-
worth (2003) or Titov and Kas’yanov (1995)) and in their
study of coastal stratus clouds, Vali et al. (1998) found
that the distribution of reflectivity measured by the WCR
was well approximated by a lognormal distribution (nor-
mal distribution in dBZ). We generally obtained the same
result in DYCOMS-II.

The lognormal distribution is estimated as follows: For
each bin i, a random series is generated based on a Pois-
son process, but using a lognormally-distributed rate, with
a mean ni and a standard deviation σni (see Appendix for
the probability density function (PDF) of the Poisson and
lognormal distributions). ni is taken equal to the observed
mean number of counts per time interval and σni is cho-
sen to best fit the observed distribution.

To determine the value of σni which best fits the ob-
servations for each leg using a sampling interval of 2 s,
the squared differences between the observed and mod-
eled departure were plotted as a function of σni . For each
leg, the LVPDs were generated with ni equal to the mean
number of counts observed. Figure 2 displays the re-
sults for the 115 µm binsize at CB and shows that there
is an objective way to optimize the estimate of σni ; i.e.
the value of σni which minimizes the squared difference.
Figures 3 displays, for the same leg and binsize, the ob-
served and modeled departure for the optimal σni . The
agreement is very convincing, and it was generally the
case for all bins of the 260-X probe and for all legs.

The variance of the counts that we obtain from the
LVPD approach is an estimate of the variance due to hor-



Figure 2:Squared difference between the observed departure
from random Poisson statisticsσ2 and the modeled departure
as a function of the standard deviation of countsσni , for the
case of 115 µm bin size at CB. Note thatσ2 was usually one or
two orders of magnitude larger than that found for two random
Poisson series of same rate. The vertical barred line represent
the variation over 100 cases.

Figure 3:Observed (triangles and dashed line) and modeled
(solid line) departure from random Poisson statistics (times
100) in the 115 µm channel at CB, for theσni value which
minimizes the error shown in Fig. 2. The vertical barred lines
represent the standard deviation of 100 cases.

izontal heterogeneities in the drop distribution. The vari-
ance calculated directly from a series of counts is the vari-
ance due to Poisson counting process (equal to the mean
number of counts) plus the non-Poisson variance con-
tributed by the heterogeneities, since the two processes
should be independent (see eq. 2). Figure 4 shows the
sum of the Poisson variance (ni ) plus the variance due to
the lognormal distribution (σ2

ni
), versus the total variance

calculated directly (δn2
i ). The one-to-one slope suggests

good agreement between the two estimates of the total
variance. This confirms our assumption that the two pro-
cesses are independent and lends further support to our
selection of a lognormally varying Poisson process.

Figure 4: Sum of the variance in counts calculated from
a Poisson random process plus lognormally-distributed cloud
heterogeneities versus the total variance obtained directly from
the counts. All the legs and bins are considered here, one point
representing one bin in a given leg. The probe used is the 260X.
Note the logarithmic scale.

4. ESTIMATING DOPPLER VELOCITY FLUC-
TUATIONS

In order to evaluate the effect of the fall velocity fluc-
tuations on the variance of the Doppler velocity, we
need to estimate the standard deviation of the reflectivity-
weighted fall velocity from the standard deviation of the
counts in each bin due to physical processes, that was
evaluated using the method shown in the previous sec-
tion.

The reflectivity and the reflectivity-weighted fall velocity
resulting from the drops measured by the PMS probe are:

Z( j) = ∑
i

ci( j)D6
i , (4)



vtz( j) =
∑i ci( j)vti D

6
i

∑i ci( j)D6
i

. (5)

The summation is over all the bins, Di is the diameter of
drops in bin i, vti is the terminal fall velocity of the drops of
size Di , ci is the concentration of drops in the same bin,
and j is the time or space counter. The 260X bin drop
sizes ranged from 15 to 645 µm with a width of 10 µm. ci

is deduced from the number of counts ni by

ci( j) =
ni( j)

Va( j)∆t Si
, (6)

where Va is the aircraft true airspeed, ∆t is the sampling
period and Si is the PMS sampling area. The terminal fall
velocity of the particle as a function of diameter is given
by (Rogers and Yau, 1989):

vti (Di) =−0.3 108Di2 for Di ≤ 133µm,

vti (Di) =−4.0 103Di for 133µm < Di ≤ 1250µm.

(7)

The variance of the reflectivity and of the fall velocity
was computed by a simple numerical model. Random
lognormal distributions of counts with 105 sample inter-
vals were generated for each bin, using the mean number
ni and standard deviation of counts σni , and were used
to calculate a random series of Z and vtz with equations
(4) and (5). Because of the sumation over all the bins
in equations (4) and (5), we had to make an assumtion
relative to the way the bins fluctuate relatively to each
other. The two following extreme opposite assumptions
were tested: either the bins are totally independant or
they are fully correlated. With the in-phase hypothesis,
we found the best comparison between this calculated
reflectivity variance and the observed one with the radar
measurements made during a leg flown above the cloud
to allow the observation of the whole cloud layer, during
the same flight. Fig. 5 displays the profile of the radar
reflectivity variance observed during this radar leg (after
a 2 s average), compared with the calculated reflectivity
variance.

The standard deviation of the reflectivity-weighted fall
velocity was calculated using the same assumption. The
order (∼ 0.05 ms−1) found is small relative to standard
deviation of the vertical Doppler velocity observed with
the radar (∼ 0.4 ms−1) at the same scale. Because the
fall velocity variance is an order of magnitude less than
the air vertical velocity variance, this variance will not
have a strong impact on the study of turbulence from the
Wyoming Cloud Radar Doppler velocity during this flight.
Since the reflectivity-weighted fall velocity is insensitive to
any fluctuation in the total number of particles, provided
the size distribution function stays the same, the small
order of magnitude we find for the reflectivity-weighted

Figure 5:Reflectivity variance profile. Solid line: profile of the
radar reflectivity variance over the whole radar leg, obtained
from 2 s averaged measurements. Closed triangles: reflectivity
variance deduced from the 260X measurements, with the as-
sumption that the bins are in phase.

fall velocity is consistent with the results of Van Zanten
et al. (2004) who observed that the normalized drop size
distribution (median diameter and width) from 2 minute
time intervals hardly changes along the leg, while the to-
tal number of particles does change. Using radar reflec-
tivity measurements during the East Pacific Investigation
of Climate (EPIC), Comstock et al. (2003) deduced the
median radius r and the total number of drizzle drops ND

from Z-R relationships and made the same observation;
that is the fluctuations in precipitation rate are primarily
determined by the fluctuations in ND.

5. CONCLUDING REMARKS

We find that the assumption of a lognormal horizon-
tal distribution of hydrometeors in marine stratocumulus
combined with Poisson-distributed fluctuations in the ob-
served count rate due to the limited sampling volume
gives good agreement with the observed count distribu-
tions for the 260X probe.



We were able to deduce the variance of the reflectivity-
weighted fall velocity from the non-Poisson variance of
the counts in each bin. This residual variance is due
to physical cloud processes. For the purpose of using
Doppler velocity measurements to study the character-
istics of the turbulence in stratocumulus (see extended
abstract 6.4) and as a first step in this study, we found
a relatively small variance of the reflectivity-weighted fall
velocity compared with the vertical air velocity.

Most of the limitations of this study are due to the spar-
sity of the drizzle drops and the difficulty in measuring
them. In addition, there may be some heterogeneities
of the microphysics structure at smaller scales that are
likely not accurately modeled by a simple lognormal dis-
tribution. These limitations lead to larger uncertainties in
our estimate of the fluctuation in reflectivity-weighted fall
velocity.

APPENDIX

Poisson probability density function

Given the mean number of counts per sampling time
interval n, the Poisson probability density function is the
probability of observing k counts during a particular time
interval:

P(k) =
nk

k!
e−n. (8)

The variance and the mean of a Poisson distribution are
equal.

Lognormal distribution

A random variable n has a lognormal distribution if lnn
has a normal distribution. The lognormal distribution is
a two-parameter distribution with parameters µ′ and σn′ ,
where µ′ is the mean of lnn, and σn′ is the standard de-
viation of lnn. The lognormal probability density function
is

f (n) =
1

nσn′
√

2π
e
− 1

2( lnn−µ′
σn′

)2

. (9)

Defining n and σn as respectively the mean and the stan-
dard deviation of n, we have:

µ′ = lnn− 1
2

ln

(
σ2

n

n2 +1

)
σn′ =

√
ln

(
σ2

n

n2 +1

) (10)
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