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1. INTRODUCTION

The Global Positioning System (GPS), originally de-
signed for navigation purposes, has shown its capabili-
ties for use in atmospheric studies for over a decade now
(e.g., Bevis et al. 1992). Atmospheric delays of the GPS
signals, caused by the atmospheric refractivity along the
ray path to a ground-based receiver, are used as tracers
of atmospheric densities. The delay caused by the electri-
cally neutral atmosphere consist of a wet and hydrostatic
component and is often referred to as tropospheric delay,
because the troposphere is responsible for most of this
delay. Usually, Zenith Tropospheric Delays (ZTDs), are
estimated by mapping slant delays (i.e., delays along the
ray paths) to zenith-equivalent values by a zenith-angle-
dependent mapping function. Mapping functions depend
on (mean) atmospheric conditions and usually assume
a horizontally layered (homogeneous) atmosphere. This
way a single parameter, the ZTD, describes the mean
atmospheric state. If we subtract the hydrostatic zenith
delay, which is well predictable when accurate pressure
values are known, the remaining part of the ZTD can be
attributed to water vapor and is often used as observa-
tion for atmospheric studies. This single parameter does
however not reflect any heterogeneous fluctuations in the
atmosphere caused by turbulence.

Although parameterization of all fluctuations is im-
possible since, even in a network of receivers, this would
lead to an underdetermined set of equations, we can
derive a stochastic model for the fluctuations if we as-
sume Kolmogorov turbulence. In fact, we could estimate
the fluctuations if we added extra zero-mean pseudo-
observations (soft constraints) for these fluctuations with
their corresponding covariance matrix (Kleijer 2004). If
we knew the scaling of the covariance matrix, these soft
constraints could improve the positioning precision for
static applications, since atmospheric turbulence is be-
lieved to be a dominating error source. This scaling
would represent the degree of heterogeneity, or turbu-
lence, present in the atmosphere.

This paper describes a method for estimating this tur-
bulence variance scale factor with a single GPS receiver.
The application we have in mind is that of an accurate,
independent, continuous, all-weather, inexpensive, near-
real-time, passive remote-sensing technique for measur-
ing atmospheric turbulence strength.

Instantaneous measurements of refractive-index
fluctuation variations are important for a variety of atmo-

∗Corresponding author address: Frank Kleijer, Harvard-
Smithsonian Center for Astrophysics, 60 Garden Street, Cam-
bridge, MA 02138, USA; e-mail: fkleijer@cfa.harvard.edu.

sphere problems, and could potentially improve weather
forecasts. Numerical weather prediction models, used for
either short or long-term predictions, can treat the me-
teorology on scales down to a few kilometers with rea-
sonable accuracy, but have neither the temporal nor spa-
tial resolution required to describe the turbulent interac-
tion that occurs in the boundary layer (Wyngaard 1992).
The current inability to couple small-scale atmospheric
processes in the boundary layer to large-scale numeri-
cal weather prediction models can significantly degrade
performance of the latter (Beljaars 1995). This inability
stems, from lack of reliable measurements of instanta-
neous refractive-index fields in the boundary layer (Wyn-
gaard et al. 2001). With its low-cost user systems,
sensing the atmosphere with GPS, using its carrier-beat
phase observables, would seem to offer possibilities for
near-real-time monitoring of atmospheric turbulence over
dense spatial fields.

In the section that follows we introduce the GPS
observation equations. In Sect. 3, we develop three
stochastic turbulence models. Section 4 deals with the
technique of Variance Component Estimation (VCE) and
describes the VCE observation model that we used,
based on the observation equations of Sect. 2 and the
stochastic models of Sect. 3. In Sect. 5, we present pre-
liminary results of applying this method to a GPS data set
from a station near Mt. Washington, New Hampshire. We
discuss the results of this study in Sect. 6.

2. GPS OBSERVATION EQUATIONS

The GPS observes at two frequencies: f1 = 154 ·
10.23 MHz ≈ 1.57 GHz and f2 = 120 · 10.23 MHz ≈ 1.23
GHz. The observation equation for the GPS carrier-beat
phase observable φs,f (k) for epoch k = 1, ..., b, satellite
s = 1, ..., mk, and frequency f = 1, 2 is:

φs,f (k) = as,f + ρs(k) − δss(k) + τs(k)
+ δr,f (k) + µf ıs(k) + εs,f (k).

(1)

(See, e.g.: Hofmann-Wellenhof et al. 1992; Teunissen
and Kleusberg 1998.) In Eq. (1), as,f is the non-integer
phase ambiguity, an integer ambiguity lumped with initial
phase offsets at receiver and satellite; ρs(k) is the range
between receiver and satellite; δss(k) is the satellite clock
error lumped with assumed equal satellite hardware de-
lays for both frequencies; τs(k) is the tropospheric de-
lay; δr,f (k) is the receiver clock error lumped with a
frequency-dependenthardware-delay term; µf ıs(k) is the
ionospheric delay; and εs,f (k) is a zero-mean random ob-
servation error term. All terms are in metric units.
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The observations are corrected for a-priori values of
known or modeled errors such as phase-center varia-
tions, solid earth tides, phase wind-up, and a-priori tropo-
spheric delays. The latter at least include the hydrostatic
delays, but often also wet delays, leaving only residual
wet delays as troposphere parameters. We can also cor-
rect the observations for known ranges and satellite clock
errors. Equation (1) then still holds, but instead of ranges
and satellite clock errors, it contains range errors and dif-
ferential satellite clock errors as parameters. The ranges
can be computed from known receiver and satellite co-
ordinates, for example, from Precise Orbit Determination
(POD) from global solutions of GPS data, such as those
produced by the International GPS Service (IGS) (Beut-
ler et al. 1999). Satellite clock errors can, analogously, be
obtained from IGS solutions. Since these two parameters
cannot be separated in a single-receiver set-up, they will
be lumped into a parameter

%s(k)
.
= ρs(k) − δss(k), (2)

where .
= denotes ‘by definition.’ The corrected phase ob-

servations are also referred to as prefit residuals.
The dispersiveness of the ionosphere is expressed

in the scale factor µf . We may assign µ1 = f2/f1 and
µ2 = f1/f2, or any multiple of these two values. A linear
combination of the observables at both frequencies can
be formed as:

φs,`(k)
.
= µ1φs,2(k) − µ2φs,1(k)
= as,` + γ`%s(k) + γ`τs(k)

+ δr,`(k) + εs,`(k),
(3)

giving an ionosphere-free observable. The index ` indi-
cates a linear combination, and γ`

.
= µ1 − µ2. We will

assume µ1 and µ2 are chosen such that γ` = 1. An
example of ionosphere-free prefit residuals is shown in
Fig. 1.
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FIG. 1: Ionosphere-free prefit residuals of a 24-hour GPS
data set sampled at 300-s intervals (see below). The residuals
have been corrected for receiver clock errors for clarity. GPS
satellites are identified by their Pseudo Random Noise (PRN)
code number (shown to the right of each line).

If we have mk satellites at epoch k, mk − 1 single-
differenced observables can be formed:

∆φs,`(k) = ∆as,` + ∆%s(k) + ∆τs(k) + ∆εs,`(k). (4)

These single differences are formed between satellites;
usually, when processing baselines, the term ‘single
difference’ refers to differences between receivers. In
Eq. (4) there are no receiver-clock errors since they are
common to all ionosphere-free observables at epoch k.
These equations are underdetermined. If we have b
epochs of data and if m = m1 = · · · = mb, there are
b(m−1) observations, m−1 ambiguities, b(m−1) lumped
range and satellite clock parameters, and b(m− 1) tropo-
sphere parameters. To create redundancy we have to
make some assumptions. One possibility is to assume
that the parameters ∆%s(k) are constant in time. In fact
this is a reasonable assumption if the a-priori corrections
to the ranges and satellite clock errors are unbiased. In
this case we have to lump them with the ambiguities to
generally constant parameters, reducing the total number
of parameters by b(m − 1). An alternative is to assume
them linearly changing in time, reducing the number of
parameters by only (b − 1)(m − 1) instead. The usual
method of reducing the number of troposphere parame-
ters is assuming that the tropospheric delays for a certain
epoch are products of a single zenith delay and a map-
ping function. The number of troposphere parameters is
then reduced to one ZTD per epoch. For sufficiently short
periods the number of parameters could even further be
reduced to one ZTD per batch. Sophisticated mapping
functions exist for large zenith angles (e.g., Niell 1996),
but below 75◦ a simple secant function probably suffices
for our application.

A least-squares estimation of parameters is now pos-
sible if we have a covariance matrix of the observables.
The noise of the observables consists of random noise
∆εs,`(k), errors in the a-priori corrections of the ranges
and satellite clock errors, and atmospheric turbulence. It
is in the last type of noise we are interested in this study.

3. TURBULENCE NOISE

We consider the tropospheric delay caused by turbu-
lence to be the zero-mean difference between the actual
slant delay τ and a mapped zenith delay τ z :

δτ (αs, zs)
.
= τ (αs, zs) − M(zs)τ

z, (5)

where αs is the azimuth of satellite s, and M(zs) is the
mapping function for satellite s as function of zenith an-
gle zs. In short-hand notation we write: δτs ≡ δτ (αs, zs),
τs ≡ τ (αs, zs), and Ms ≡ M(zs), where ≡ is the notation
for ‘is equivalent with.’ If we use a zenith-delay mapping
as parameterization of the slant tropospheric delay, the
term δτs remains as an error term to be modeled stochas-
tically. A zenith-equivalent delay can be defined as:

τ z
s

.
= M−1

s τs = 10−6

Z

∞

0

N(rs(h)) dh, (6)
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where N(rs(h)) is the refractivity along the ray path, rs(h)
is the position vector for a point along the ray path, and h
is the height above the receiver in meters. Using a map-
ping function assumes a horizontally layered atmosphere
where the refractivity is a function of height alone. The
zenith-equivalent delay in the zenith direction itself will be
written as τ z

0 , and the corresponding direction vector by
r0.

With the equation

(a−b)(c−d) =
1

2
[(a−d)2+(b−c)2−(a−c)2−(b−d)2], (7)

the turbulence covariance between any two directions i
and j can now be found (Emardson and Jarlemark 1999;
Kleijer 2004):

E{δτi δτj} =
E{[τi − Miτ

z][τj − Mjτ
z]} =

MiMj E{[M−1

i τi − τ z][M−1

j τj − τ z]} =

MiMj E{[τ z
i − τ z

0 ][τ z
i − τ z

0 ]} =

MiMj 10−12
E{

Z

∞

0

Z

∞

0

[N(ri(h1)) − N(r0(h1))]

×[N(rj(h2)) − N(r0(h2))] dh1dh2} =
1

2
MiMj 10−12

Z

∞

0

Z

∞

0

[Di0
N + D0j

N

−Dij
N − D00

N ] dh1dh2,
(8)

where E{.} denotes the mathematical expectation, and

Dij
N ≡ DN (ri(h1), rj(h2))

.
= < [ N(ri(h1)) − N(rj(h2)) ]2 >
= E{[ N(ri(h1)) − N(rj(h2)) ]2}

(9)

is a short-hand notation for the refractivity structure func-
tion. We assumed the property of ergodicity, that is, time
averages < . > equal statistical means.

Kolmogorov turbulence predicts the structure func-
tion to be a power-law function (Tatarski 1961):

Dij
N = C2

N |ri − rj |
p, (10)

with p = 2/3, and C2
N [m−p] a refractivity constant. This

power-law function was however derived for horizontal re-
fractivity differences. There may be a very different height
dependency. Therefore we investigate the performance
of three different models that take into account a different
height dependency: The uniform weighting-model (u), the
exponential-weighting model (e), and the layer model (l);
see appendix.

Each of the models (∗ = u, e, l) can be written as

E{δτi δτj} = σ2
2,∗Q

u
2,∗{i, j}, (11)

where Qu
2,∗{i, j} is the {i, j}th element of the co-

factor matrix Qu
2,∗. (The upper-index u indicates

‘undifferenced.’) The cofactor matrix depends on geome-
try only. The turbulence variance factor σ2

2,∗ is considered
a turbulence strength parameter, which we intend to esti-
mate.

Values for the elements of the cofactor matrix for the
exponential-weighting model are shown in Fig. 2 for a cer-
tain geometry. (This geometry is unusual, but instructive.)
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FIG. 2: Values of the undifferenced turbulence cofactor ma-
trix for the exponential-weighting model. A geometry is assumed
with zenith angles z1 and z2 of 10◦ to 70◦ in steps of 10◦ and
azimuth differences ∆α of 0◦ to 180◦ in steps of 30◦ for each
zenith-angle combination; lines between points are shown for
clarity.

This figure shows that for larger zenith angles the turbu-
lence (co-)variance increases rapidly. For increasing az-
imuth differences the covariance, and therefore the corre-
lation, decreases. These characteristics hold for all three
models.
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FIG. 3: Values of turbulence cofactor matrix ratios
of the layer model and the exponential-weighting model:
Qu

2,l
{i, j}/Qu

2,e{i, j}. Same geometry as in Fig. 2.

Figure 3 shows ratios of the elements of the cofactor
matrix in the layer model and the exponential-weighting
model. The values are on average about a factor 15
smaller for the exponential-weighting model for actual
satellite geometries at Mt. Washington (see below), but
for azimuths of 180◦ this factor can increase up to a few
thousand. The uniform-weighting model is closer to the
exponential-weighting model. It has on average values of
about one-fifth of the layer-model values.
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4. VARIANCE COMPONENT ESTIMATION

Although turbulence noise is expected to be the dom-
inant error source, there may be other error sources.
Often the (ionosphere-free) phase observables are
assumed uncorrelated for channel-related observation
noise. (GPS receivers usually measure on 12 channels
to a maximum of 12 satellites.) If the observation noise is
equal for all channels, the covariance matrix for epoch k
reads:

D{ε,`(k)} = σ2
1Imk

, (12)

where ε,`(k)
.
= [ε1,`(k), ..., εmk,`(k)]′, D{.}

.
= E{(. −

E{.})(. − E{.})′} denotes the mathematical dispersion,
σ2

1 is the variance of the observation noise, and Imk
is an

mk-by-mk identity matrix. (We use ′ for the transpose of
a vector or matrix.) We assume that errors in the satellite
clocks and orbits can be subsumed here as well.

If the total noise for the undifferenced observations
φ,`(k)

.
= [φ1,`(k), ..., φmk,`(k)]′ at epoch k consists of

observation noise ε,`(k) and turbulence noise δτ (k)
.
=

[δτ1(k), ..., δτmk
(k)]′, our total stochastic model reads:

D{φ,`(k)} = σ2
1Imk

+ σ2
2Qu

2 (k), (13)

where Qu
2 (k) = E{δτ (k) δτ (k)′} follows from the geome-

try at epoch k as in Eq. (28): The matrix Qu
2 (k) is epoch

dependent because of the changing satellite configura-
tions; in each of the three models it depends only on the
receiver-satellite directions. In Eq. (13), we dropped the
model indicator ∗ = u, e, l for readability.

Equation (13) describes the assumed covariance
matrix of the undifferenced observables. The GPS
observation equations of Eq. (4) are however single-
differenced. The single-difference transformation for all
observations of epoch k reads: ∆φ,`(k) = S(k)′φ,`(k),
with single-difference transformation matrix

S(k)′
.
=

2

6

6

6

6

6

6

6

6

4

1 −1

. . .
...

1 −1
−1 1

...
. . .

−1 1

3

7

7

7

7

7

7

7

7

5

, (14)

which has the -1s at any of the columns. But this column,
which refers the the pivot satellite, is part of the definition
of S(k); it is associated with epoch k. If we observe to
mk satellites in epoch k, S(k)′ has size (mk − 1)-by-mk.

The stochastic model for the single-differenced
observables follows from the propagation law of
(co)variances:

D{y(k)}
.
= Qy(k) = σ2

1Q1(k) + σ2
2Q2(k), (15)

where y(k) ≡ ∆φ,`(k) is used as a shorter notation
for the single-differenced observables, and Q1(k)

.
=

S(k)′S(k) and Q2(k)
.
= S(k)′Qu

2 (k)S(k) are transformed
cofactor matrices. The corresponding functional model
reads:

E{y(k)} = A(k) x, (16)

with A(k) the (partial) design matrix for epoch k, and
x the vector with parameters, containing lumped am-
biguities, ZTDs, and, if so desired, linearly changing
(range/satellite clock) parameters. If we stack the obser-
vations of all epochs in one vector, y = [y(1)′, ..., y(b)′]′,
use the notation A = [A(1)′, ..., A(b)′]′, and assume
the observables to be uncorrelated in time, Qi =
diag[Qi(1), ..., Qi(b)], the observation model for estimat-
ing parameters reads:

E{y} = A x ; D{y} = Qy. (17)

The least-squares corrections to the observations
are: ε̂ = [ε̂(1)′, ..., ε̂(b)′]′ = P⊥

A y, with P⊥

A = I −
A(A′Q−1

y A)−1A′Q−1
y a projector that projects on the or-

thogonal subspace of A. Least-squares estimates of the
variance factors σ2

1 and σ2
2 can be found by Variance

Component Estimation (VCE) (e.g.: Kenselaar 1993;
Koch 1999). The variance estimates follow from solving
a set of normal equations Nσ̂ = β, where σ̂ = [σ̂2

1 , σ̂2
2 ]′,

and

Nij =
1

2
tr(Q−1

y P⊥

A QiQ
−1
y P⊥

A Qj);

βi =
1

2
y′Q−1

y P⊥

A QiQ
−1
y P⊥

A y,
(18)

with, in this case, i, j = 1, 2. We used the notation tr(.)
for the trace of a matrix. Solving the normal equations
involves iterations because they are in terms of Qy, for
which a priori values of the variance factors are required.
The covariance matrix of the variance factor estimates is
the inverse of the normal matrix: Qσ̂ = N−1. The covari-
ance matrix of the estimated variance factors depends
on the estimated variance factors themselves, since the
normal matrix also depends on them. The VCE formu-
las take more computation time than simple least-squares
estimation of parameters would because of the iterations
and since a set of normal equations is to be solved in-
volving cofactor matrix products for each element of the
normal matrix. Especially for large numbers of observa-
tions the inversion of the covariance matrix takes a lot of
computation time, even if we do not actually compute the
inverse but use Cholesky decompositions and substitu-
tions instead. The block-diagonal structure of the cofactor
matrices, and therefore also of the total covariance ma-
trix, saves however considerate computation time since
smaller partial covariance matrices are inverted.

In the special case of just one variance factor, the
amount of computations is reduced further. If the ob-
servation noise can be neglected, so that all noise is at-
tributed to turbulence noise, the computation of the turbu-
lence variance factor reduces to: σ̂2

2 = β/N , with

N =
1

2
σ−4

2 r;

β =
1

2
σ−4

2

b
X

k=1

ε̂(k)′Q2(k)−1ε̂(k),
(19)

and r =
P

(mk−1)−n the redundancy if n is the number
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of parameters. Or simply:

σ̂2
2 =

b
X

k=1

ε̂(k)′Q2(k)−1ε̂(k)/r;

σ̂2

σ̂2

2

= 2 σ̂4
2/r.

(20)

5. PRELIMINARY RESULTS

In this section, we present results using data from
a site in a regional GPS network that we established
near Mt. Washington, New Hampshire, at 19–26 October
2000, for atmospheric studies (Elósegui and Davis 2001).
We used the GIPSY-OASIS software package (Webb and
Zumberge 1993), GPS satellite PODs and clocks from the
IGS/Jet Propulsion Laboratory (JPL) global solutions, and
site position from our processing, to compute ionosphere-
free prefit residuals once every five minutes (see Fig. 1;
clear outliers were removed). This low sampling rate was
dictated by the sampling interval of JPL’s most precise
PODs. The preliminary experimental results of this sec-
tion concern the GPS data collected on October 21, 2000.

The observation model included one ZTD per epoch
and constant parameters in which ambiguities, ranges,
and satellite clocks are lumped. The turbulence variance
factors were estimated with a moving window technique
to obtain estimates for each batch of b = 12 epochs,
which corresponds to one hour of data. With this tech-
nique in each new batch the data of the next epoch is
added and the data of the first epoch is removed. The
estimates are therefore correlated.

First, with the general VCE formulas, both σ2
1 and σ2

2

were estimated. The estimates of σ2
1 showed very low

precision. From simulations it could be seen that this is
only the case for small values of σ2

1 . Therefore, in new
computations only the turbulence variance factors were
estimated with Eq. (20). These estimates showed very
little difference with the previously acquired ones.
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FIG. 4: Estimated turbulence variance factor for the
Mt. Washington data set. Layer model. Batch size: 12 epochs.
Dashed: 1-σ error lines.
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FIG. 5: Estimated turbulence variance factor for the
Mt. Washington data set. Exponential-weighting model. Batch
size: 12 epochs. Dashed: 1-σ error lines.

Figures 4 and 5 show the turbulence variance-factor
estimates for each batch, using the layer model and the
exponential-weighting model respectively. The difference
in scaling is clear, and can directly be attributed to the
different scaling in the cofactor matrices. Apart from that,
both models result in a similar behavior of the estimates,
despite the theoretically large differences.

The precision of the variance-factor estimates de-
pends on the stochastic model, the satellite geometry,
the batch size, parameterization, and zenith cut-off an-
gle. Hardly any difference was however found between
the stochastic models, and the precision showed only lit-
tle variation for the satellite geometry at Mt. Washington.
For a zenith cut-off angle of 80◦ and a batch size of 12
epochs, the standard deviation of the estimated turbu-
lence variance factor is about 19% of the estimated vari-
ance factor itself. Decreasing the zenith cut-off angle to
70◦ gives a percentage of about 24. In other words, the
precision decreases because the number of observations
decreases, but low-elevation satellites are not vital. In
fact, it is better not to use them, because GPS potential
error sources, such as multipath and phase-center varia-
tions, are sensitive to observations at large zenith angles;
also the zenith-delay mapping requires a good mapping
function. Increasing the batch size to 24 epochs gives
a percentage of 13. Larger batches are therefore pre-
ferred, but only if the turbulence variance factor does not
vary much within the batch. Figure 6 shows the estimates
when a batch size of 24 is used. The larger batch size
has a smoothing effect, but also results in larger variance-
factor estimates, probably because of an insufficient func-
tional model. Therefore, a higher sampling is required,
not longer duration of the batches.

6. DISCUSSION

The stochastic models as described in this paper
have properties we would expect them to have. The de-
creasing correlation between increasing azimuths seems
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FIG. 6: Estimated turbulence variance factor for the
Mt. Washington data set. Layer model. Batch size: 24 epochs.
Dashed: 1-σ error lines.

intuitively correct and the decrease in variance toward
larger zenith angles is known in the GPS community (e.g.:
Rothacher et al. 1997).

Estimation of the turbulence variance factor seems
to be possible with high precision. The preliminary com-
putations of the Mt. Washington data set show temporal
variations larger than the formal precision. These varia-
tions are therefore likely to be real variations.

Except for a scaling constant C2
N,∗, the estimated

variance factors showed to be relatively insensitive to the
chosen stochastic model. This scaling constant is yet to
be interpreted. Note that the variance factors also depend
on the scaling by the GPS data processing software when
forming ionosphere-free observations.

An internal quality indicator is to be found that shows
which model performs best. Although observations to
low-elevation satellites are not strictly needed for precise
estimation of the turbulence variance, they may play a
role in the distinction of the performance of the three mod-
els. Also the power p, as used in each of the models,
should be considered a parameter for fine-tuning. Hy-
pothesis testing and VCE are the mathematical tools we
have at hand for internal validation.

We intend to process data of more stations at dif-
ferent types of locations and under different atmospheric
conditions. We also intend to use higher sampling rates
by interpolating or estimating satellite clock errors (us-
ing a network of receivers). We are currently considering
experimental validation of our method using independent
observational techniques and numerical methods such as
Large-Eddy Simulations (LES).

APPENDIX

In this appendix we show the three turbulence
models: The uniform-weighting model, the exponential-
weighting model, and the layer model.

The first model assumes C2
N to be equal to a con-

stant C2
N,u for h1 and h2 smaller than some height H , say

the scale height of water vapor (∼ 2 km), and zero else-
where (Emardson and Jarlemark 1999; Kleijer 2004). We
refer to this model as the uniform-weighting model. The
double integral over the structure function yields:

Z

∞

0

Z

∞

0

Dij
N dh1dh2 =

C2
N,u

Z H

0

Z H

0

|ri(h1) − rj(h2)|
p dh1dh2 =

C2
N,u Hp+2Fu(i, j; p),

(21)

with

Fu(i, j; p)
.
=

Z 1

0

Z 1

0

|x2
1 sec2(zi) + x2

2 sec2(zj)

−2x1x2 sec(zi) sec(zj) cos(θij)|
p
2 dx1dx2

(22)

a dimensionless function, and θij the angle between
directions i and j. We used the change of variables
x1

.
= h1/H and x2

.
= h2/H . Note that Fu(i, i; p) =

secp(zi) ·Fu(0, 0; p) and Fu(0, 0; p) = 2(p+1)−1(p+2)−1.
Because this function cannot be computed analytically for
i 6= j, we have to rely on numerical integration or, to save
computation time, approximating summations.

The second model assumes a (probably more re-
alistic) exponentially decaying function for the refrac-
tivity structure function resulting from an exponentially
decaying C2

N (Gradinarsky 2002; Stoew 2004). This
exponential-weighting model yields:

Z

∞

0

Z

∞

0

Dij
N dh1dh2 =

C2
N,e

Z

∞

0

Z

∞

0

|ri(h1) − rj(h2)|
p

· exp(−(h1 + h2)/H) dh1dh2 =
C2

N,e Hp+2Fe(i, j; p),

(23)

with

Fe(i, j; p)
.
=

Z

∞

0

Z

∞

0

|x2
1 sec2(zi) + x2

2 sec2(zj)−

2x1x2 sec(zi) sec(zj) cos(θij)|
p
2 · exp(−x1 − x2) dx1dx2.

(24)
This function has properties: Fu(i, i; p) = secp(zi)·
Fu(0, 0; p) and Fu(0, 0; p) =

R

∞

0
xp exp(−x)dx

.
= Γ(p+1),

where Γ(.) is the gamma function. For i 6= j, the function
Fe(i, j; p) has to be computed numerically also.

The third model assumes there is correlation be-
tween refractivity values within limited height differences,
but not beyond. We refer to this model as the layer model
because the atmosphere is assumed to be layered and
turbulence between layers is assumed to be negligible.
This model yields (Davis and Elósegui 2001):

Z

∞

0

Z

∞

0

Dij
N dh1dh2 =

Z

∞

0

C2
N,l(h) · ∆H · |xi(h1) − xj(h2)|

p dh =

∆H

Z

∞

0

C2
N,l(h) hp dh · Fl(i, j; p),

(25)
with xi the horizontal component of ri, and

Fl(i, j; p)
.
= | tan2(zi) + tan2(zj)

−2 tan(zi) tan(zj) cos(αij)|
p
2 ,

(26)
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where αij
.
= αj − αi is the azimuth difference (∆α) of

directions i and j, and ∆H is the layer thickness. Con-
trary to the previous models no (numerical) integration is
needed. Special cases are: Fl(i, 0; p) = tanp(zi) and
Fl(i, i; p) = 0.

Each of the models (∗ = u, e, l) can be written as

E{δτi δτj} = σ2
2,∗Q

u
2,∗{i, j}, (27)

if we define the {i, j}th element of the cofactor matrix
Qu

2,∗ as

Qu
2,∗{i, j}

.
= MiMj [F∗(i, 0; p) + F∗(0, j; p)

−F∗(i, j; p) − F∗(0, 0; p)] ,
(28)

and assign:

σ2
2,u =

1

2
10−12 C2

N,u Hp+2;

σ2
2,e =

1

2
10−12 C2

N,e Hp+2;

σ2
2,l =

1

2
10−12 ∆H

Z

∞

0

C2
N,l(h) hp dh.

(29)
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