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1. INTRODUCTION

Clouds and their interactions with radiation is
recognized by the most recent IPCC (Intergovernmental
Panel on Climate Change; 2001) report as the greatest
uncertainty in future projections of climate, and, despite
the considerable improvement of the physical realism of
cloud representation in general circulation models
(GCMs), representation of clouds and their feedbacks is
still the weakest component of current GCMs (e.g.,
Senior and Mitchell 1993, Cess et al. 1996). In the last 5
to 10 years, cloud resolving models (CRMs) and single
column models (SCMs) have become extensively used
tools in evaluation and improvement of cloud
representation in GCMs (Randall et al. 1996). CRMs,
because of their ability to explicitly simulate cloud-scale
dynamics and meso-scale processes, are increasingly
being used for understanding cloud processes (e.g.
Chaboureau and Bechtold 2002, Kohler 1999, Krueger
et al. 1995b, c). Recently, a high-resolution CRM has
been embedded in a GCM to replace most of the
physical parameterizations (Grabowski 2001). This
multiscale modeling framework approach has been
shown to produce the Madden-Julian Oscillation as well
as higher-frequency tropical waves in a much more
realistic manner than a GCM with a traditional cloud
parameterization (Khairoutdinov and Randall 2001,
Khairoutdinov et al. 2003). However, detailed evaluations
of the ability of CRMs to represent the radiative effects of
various cloud types have not been made. The usefulness
of SCMs to evaluate/develop/improve cloud
parameterizations in GCMs has been improved partly by
the increasing use of CRMs, and partly by the availability
of more observations suitable for SCM studies produced
by projects such as the Atmospheric Radiation
Measurement program (ARM; Stokes and Schwartz
1994, Ackerman and Stokes 2003).

Cloud properties for large spatial and temporal
domains are now available from geostationary satellite
observations with spatial resolution on the order of one
to several kilometer(s) using advanced retrieval
methods. One example of those datasets is that
produced by Patrick Minnis’ group at NASA Langley
Research Center (LaRC). This dataset is used in this
study and a description of it will be given in section 3.
Another example is the ISCCP (International Satellite
Cloud Climatology Project; Rossow and Schiffer 1991

and 1999) DX data, which has a spatial sampling
resolution of approximately 30 km and a temporal
sampling interval of 3 h (Rossow et al. 1996). These
datasets make it possible to evaluate the radiative effects
of various cloud types in a CRM or SCM/GCM
simulation.

Traditionally, evaluations of GCM cloudiness
compare simulated and observed cloud properties using
climatological and often zonal averages (e.g. Weare et al
1996). Averaging in time and/or space can obscure the
presence of compensating errors and provide very
limited information about the sources of errors. Two new
trends in the studies for GCM cloudiness evaluation have
appeared recently. One trend is an increasing use of the
compositing method. This method compares cloud
properties as a function of meteorological conditions and
thus cloudiness is directly connected to meteorological
processes. Jakob (2003) recently proposed a new
strategy for cloud parameterization evaluation. The key
of the proposed strategy was to link the evaluation of the
model climate to the selection of case studies through
the use of compositing techniques. Xu et al. (2004)
proposed an object classification methodology which
classifies the satellite data into cloud systems defined by
cloud-system types, sizes, geographic locations, and the
matched large-scale environments. They analyzed the
probability density functions (PDFs) of the identified
cloud objects based upon the pixel-level information and
proposed a method which can use these statistical
properties to evaluate models. The other trend is more
explicit use of cloud-scale (i.e. km-scale) observations. It
is being increasingly recognized that the scales resolved
by CRMs are the most physically appropriate ones for
developing and testing cloud parameterizations and
models should be tested against observed cloud-scale
statistics, as pointed out by Randall et al. (2003). Such
cloud-scale statistics can be obtained from satellite
observations, such as ISCCP and CERES (Clouds and
the Earth’s Radiant Energy System; Wielicki et al. 1996),
from cloud radar observations, such as those obtained at
the ARM sites, and from precipitation radar
observations, such as those provided by the TRMM
(Tropical Rainfall Measuring Mission). Examples of
comparing GCM results composited by meteorological
parameters to cloud-scale data from satellite observation
are Klein and Jakob (1999), Tselioudis et al. (2000), and
Norris and Weaver (2001).

Using the cirrus property statistics from km-scale
observations collected at the ARM Sourthern Great
Plains (SGP) site and the bulk microphysical properties
of thin cirrus layers produced by Mace et al. (2001), we
demonstrated a new method to evaluate a SCM/GCM
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cloud properties (Luo et al. 2004). We also evaluated the
SCM’s parameterizations for convective detrainment and
microphysical processes through comparison with a
CRM and related the errors of the SCM’s cirrus
properties to the defects in its parameterizations (Luo
and Krueger 2004). These constitute the Part I and II of
our papers. The SCM used in our study as an example to
demonstrate our method is based on the NCEP
(National Centers of Environmental Prediction) Global
Forecast System (GFS) atmospheric model and the
CRM used is the UCLA/CSU CRM. In this paper (Part
III), we assess radiative effects of various cloud types,
defined by cloud top pressure and cloud optical depth,
simulated by the SCM as well as by the CRM, using
pixel-level satellite retrievals.

Using the profiles of cloud fraction and cloud water/
ice mixing ratio from the SCM simulation and the km-
scale cloud fields from the CRM simulation as inputs to
the ISCCP cloud-simulator and a radiative transfer
scheme, we diagnosed the occurrence frequencies and
radiative effects of various cloud types. Model’s errors
are estimated through a comparison with the km-scale
satellite observations. Possible sources of the errors are
related to the distributions of cloud optical depth and top
pressure/temperature, as well as the occurrence
frequency and timing of cloud type. Our first objective is
to demonstrate an evaluation method that gives more
insights to the ability of models (CRM and SCM/GCM) in
simulating clouds. The second goal of this study is to
evaluate the performance of the two models used.
Section 2 includes a simple description of the
simulations made using the two models. Section 3
describes the observational dataset used. The analysis
methods are presented in section 4. The cloud radiative
forcings (CRFs) by various cloud types and their
occurrence frequencies simulated by the two models are
compared with the satellite observations in section 5. A
summary and discussions of these results are provided
in section 6.

2. SIMULATIONS

The University of California-Los Angeles/Colorado
State University (UCLA/CSU) CRM and a SCM version
of the NCEP GFS atmospheric model are used in this
study. The large-scale forcing data from the ARM
variational analysis (Zhang and Lin 1997, Zhang et al.
2001) for the Southern Great Plains (SGP) site summer
1997 Intensive Operation Period (IOP) were used to
“drive” the models. The forcing data represent the states
of an atmospheric column whose horizontal size is about

100,000 km2. The IOP covered 29 days starting from
June 23, 1997 23:30 UTC which contained several
intensive precipitation events and dry and clear days
associated with the activities of the large-scale upper-
level troughs and ridges over the North America
continent. Clouds were observed by the Geostationary
Operational Environmental Satellite (GOES) to be mainly

with high-tops during the IOP (Fig. 1). The occurrence
frequency of cirrus clouds simulated by the CRM and the
SCM, respectively, is correlated better with the satellite
observations during the 14-day subperiods A, B, and C
(defined in Fig. 1) than the other subperiods of the IOP
(Luo et al. 2003, 2004). The major reason is the
relatively smaller large-scale advection of hydrometeor
into or out of the SGP domain during these ABC
subperiods. Profiles of the large-scale advection of
hydrometeor were not quantitatively available and not
used in the simulations. However, the animation of
GOES IR imagery does reveal that there were relatively
less cloud systems moved in or out of the SGP domain
during the 14-day subperiods. We focus our analysis on
these subperiods in this study. More detailed description
about the precipitation events during the three
subperiods can be found in Xie et al. (2002).

The CRM includes two-dimensional anelastic
dynamics, three-phase cloud microphysics, a third-
moment turbulence closure, and an interactive radiative
transfer scheme (Krueger 1988; Krueger et al. 1995a;
Xu and Randall 1995). The grid interval used is 2 km in
horizontal and varies in vertical from about 100 m near
the surface to about 1 km near the model’s top (18 km).
Details of the CRM simulation can be found in Luo et al.
(2003). We used the SCM developed by Shrinivas
Moorthi at the NCEP. The SCM is based on the year
2001 version of the NCEP GFS atmospheric model.
Description of the model that was implemented
operationally on May 15, 2001 is given in Moorthi et al.
(2001). The SCM explicitly predicts cloud water or ice
mixing ratio and diagnoses stratiform cloud fraction from
the cloud condensate mixing ratio and relative humidity.

A
B

C

F
ig

.
1.

T
he

G
O

E
S

ob
se

rv
ed

cl
ou

d
am

ou
nt

s
at

hi
gh

-
(b

lu
e)

,
m

id
-

(g
re

en
),

an
d

lo
w

-
le

ve
ls

(r
ed

)
du

rin
g

th
e

su
m

m
er

19
97

S
C

M
IO

P
at

th
e

A
R

M
S

G
P

si
te

.T
he

A
,B

,a
nd

C
sh

ow
n

at
th

e
to

p
ar

e
th

e
su

bp
er

io
ds

w
he

n
la

rg
e-

sc
al

e
ad

ve
ct

io
n

of
hy

dr
om

et
eo

rs
,

w
hi

ch
w

as
no

tu
se

d
in

th
e

si
m

ul
at

io
ns

du
e

to
la

ck
of

ob
se

rv
at

io
n,

w
as

re
la

tiv
el

y
w

ea
k

ov
er

 th
e 

S
G

P
 s

ite



The deep convection parameterization is a simplified
Arakawa-Schubert (1974) scheme with only one cloud
type considered (Pan and Wu, 1995). The effects of
convective cloud are neglected in radiation calculation.
More details of the SCM configuration were provided in
Luo et al. (2004).

3. OBSERVATIONS

Satellite observations we used include both the
longwave (LW) radiative flux and shortwave (SW) albedo
at the TOA from GOES-8 and cloud products generated
by Patrick Minnis’ group at NASA LaRC. The LW
broadband flux was derived by conversion from narrow-
band LW radiance. The monthly mean uncertainty (rms

error) of the area-averaged OLR is about 10 Wm-2 over
the SGP variational analysis domain (Khaiyer et al.
2002). We calculated the reflected shortwave (SW) flux
from broadband albedo, whose monthly mean
uncertainty (rms error) is about 0.02 over the SGP SCM
analysis domain based on the results from Khaiyer et al.
(2002).

Briefly, Minnis’ group uses a general approach for
quantifying clouds, which consists of two stages: cloud
identification and cloud properties retrieval. Cloud is
identified by comparing an observed radiance or set of
radiances at different wavelengths to the values
expected from a clear (cloudless) scene (pixel). If the
observed radiance is sufficiently different from the clear-
sky value, the pixel is designated as cloudy. For each
cloudy pixel, variables including cloud phase, cloud top
temperature, cloud optical depth, effective droplet radius
(re) or effective ice crystal diameter (De), and liquid water
path (LWP) or ice water path (IWP) are determined
iteratively by matching the observed radiances with
results from radiative transfer models and cloud
microphysical models for a wide range of particle sizes
and cloud and clear-sky temperatures. The profiles of
temperature and humidity from the Rapid Update Cycle
(RUC) 3-hourly soundings are used by the Minnis group
in their retrieval. The geostationary satellite cloud
products include cloud information over a large spatial
domain at 4-km space resolution and at half-hour time
intervals for all cloud types, so that occurrences,
properties, radiative effects, and spatial distributions of
various cloud types can be analyzed. Their
disadvantages include the varying reliability of the
retrievals. One source of uncertainties in satellite
retrievals is the assumptions made about the cloud,
atmosphere, and surface characteristics. The most
important assumptions include: (a) Cloud optical
properties are uniform over the image pixels; hence,
cloud cover of pixel is either zero or one. (b) Clouds are
single layers. (c) Surface and atmospheric optical
properties are uniform over the image pixels.

Minnis’ group used a pair of multi-spectral
algorithms, the Visible-Infrared-Solar-Infrared-Split
Window Technique (VISST) for daytime and Solar-

Infrared-Station (SIRS) method for nighttime, as
described by Minnis et al. (1995) using the models of
Minnis et al. (1998), together with the technique of
Minnis and Smith (1998) to analyze the half-hourly, 4-km
GOES-8 imager data (0.65 m, visible [VIS]; 3.9 m,

solar-infrared [SIR]; 10.8 m, infrared [IR]; and 12.0

m, split-window [SWC]). To compare, ISCCP retrieval
used a VIS-IR bispectral method in daytime and an IR-
only method in nighttime so that cloud optical properties
could not be retrieved for nighttime. The Minnis
multispectral algorithms use radiances in two more
channels than ISCCP: the SIR radiance to estimate
cloud particle size and the SWC radiance to help
determine cloud phase (Young et al. 1997). The ISCCP
DX data also provide cloud properties at pixel-level
horizontal resolution (i.e. km-scale). However, the cloud
products are available during daytime only, and were
sampled every 30 km and 3 hr. Over the SGP variational
analysis domain, there are only about 75 pixels every 3
hr in daytime. By comparison, the Minnis pixel-level
cloud products have about 7000 pixels every half hr. For
our study -- evaluating the CRFs and occurrence
frequencies of various cloud types in 29-day simulations,
the Minnis cloud products are more appropriate because
of a much larger number of samples than the ISCCP DX
dataset.

4. ANALYSIS METHOD

We analyzed the occurrence frequencies and CRFs
of various cloud types using the satellite data and results
from the two simulations. Before describing our methods,
the definition of the cloud types is presented here. We
define the cloud types using cloud optical depth and
cloud-top pressure following the ISCCP definitions. We
group the clouds into 8 types (Fig. 2): 4 high-top types:
very thin ( : 0.1 - 1.3), thin ( : 1.3 - 3.6), moderate ( :

3.6 - 9.4), and thick ( > 9.4), 2 middle-top and 2 low-top

types: thin ( : 0.1 - 9.4) and thick ( > 9.4). High-level is
defined as above 440 mb level., low-level is defined as
below 680 mb, and mid-level is in between. We combine
clouds with greater than 9.4 into one cloud type at
each level because the satellite cloud-property retrieval
method used by Minnis’ group for nighttime can not
accurately derive the values of greater than 10. Clouds

with less than 0.1 are excluded because most of them
are difficult to detect by the satellite retrieval at any time.
Clouds are grouped into 4 types at the high-level and 2
at the mid- and low-levels because most clouds during
the IOP were high-top clouds as observed by the
satellite (and the cloud radar at the SGP site). Note that
the cloud names used in Fig. 2 and hereafter are for
convenience; they are different from conventional
definitions of optically “thin,” “moderate,” and “thick”
clouds. Our studies of cirrus occurrence (Luo et al. 2003,
2004) indicate better performance of the CRM/SCM
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simulation during the 14-day ABC subperiods (Fig. 1)
when the large-scale advection of hydrometeors was
relatively small, so we focus our analysis on the same
subperiods in this study.

4.1 Occurrence Frequency of Cloud Types

4.1.1 Satellite Data

Based on the Minnis half-hourly pixel-level cloud
products, including cloud phase, cloud-top pressure, and
cloud visible optical depth, we calculated the occurrence
frequencies of various cloud types, as defined by the
total cloud visible optical depth and the cloud-top
pressure of the highest cloud layer (Fig. 2), at mostly
half-hour intervals. The occurrence frequency of a cloud
type is the fraction of the total number of pixels occupied
by the cloud type within the SGP SCM analysis domain.

4.1.2 SCM and CRM

We deployed the “ISCCP simulator” to determine
the cloud type frequency for the CRM and SCM
simulations in order to get the results from the models
that are comparable to the satellite observations. The
ISCCP simulator was developed by S. Klein (GFDL) and
M. Webb (UKMO) to provide a connection between
results from a GCM/SCM and cloud types defined by
satellite-observed visible and IR radiances. The inputs to
the ISCCP simulator include GCM/SCM simulated
profiles of temperature, pressure, cloud water/ice mixing
ratio, cloud fraction (defined as the horizontal area of
each grid box covered by clouds), 0.67 cloud optical

depth, 10.5 cloud emissivity, and surface skin

temperature ( ) and 10.5 emissivity of the surface.

All inputs are GCM/SCM grid-mean values except for the
cloud optical depth and cloud emissivity which are in-
cloud values. Firstly, the ISCCP simulator distributes the
GCM/SCM predicted grid-mean cloud water/ice content
at each level into a number of subgrid columns using the
profile of the cloud fraction together with a cloud overlap
assumption, neglecting the cloud horizontal
inhomogeneity at a level. Secondly, for each subgrid
column, the IR radiance at the TOA is calculated,
including emission/absorption of the surface, water
vapor, and clouds at all levels. Thirdly, the cloud-top
temperature ( ) is computed for each subgrid column

from the emissivity-adjusted IR radiance and the cloud-
top pressure is determined as the model level with the
same atmospheric temperature as . The occurrence

frequencies of cloud types as defined by cloud visible
optical depth and cloud-top pressure are then
determined.

We calculated the from the downward ( )

and upward ( ) LW flux measurements by Solar and

Infrared Observation Stations (SIROS) distributed over
the SGP site using the following formula, assuming that
the surface emissivity ( ) is 0.98:

(1)

where is the Stefan-Boltzmann constant. The subgrid-
scale horizontal inhomogeneity of the SCM clouds was
neglected as in the NCEP GFS atmospheric model.
Therefore, at a cloudy model level, the in-cloud value of
water/ice mixing ratio is the grid-mean value divided by
the SCM predicted cloud fraction. The in-cloud water/ice
mixing ratio and specified effective sizes of cloud water
droplets/ice crystals were used to diagnose cloud optical
properties using parameterization of Fu and Liou (1993)
for ice clouds and of Hu and Stamnes (1993) for liquid
clouds. The effective radius of cloud droplets/ice crystals
were determined by the SCM temperature in the same
way that the NCEP GFS model did. The occurrence
frequencies of cloud types were diagnosed at 15-min
intervals.

Unlike a GCM/SCM, a CRM explicitly simulates 2-D
or 3-D cloud fields, so no overlap assumption is needed
to get a km-scale cloud distribution. We modified the
original ISCCP simulator for use in our CRM analysis.
Each CRM grid column is considered as a satellite pixel.
The cloud optical depth and IR emissivity are diagnosed
directly from the CRM simulated profiles of cloud fields
and atmospheric state for each column using the
schemes of Hu and Stamnes (1993) and Fu and Liou
(1993). The cloud droplet effective radius is specified as
10 m. Both cloud ice and snow are treated as ice-

phase clouds with specified effective diameters: 50 m

for cloud ice and 150 m for snow. For mixed phase
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Fig. 2. The definition of the eight cloud types used in the
study.



clouds, the visible optical depths of the liquid water
droplets and ice crystals were added to obtain the total
visible optical depth, while the absorption coefficients of
the cloud droplets and ice crystals were added to obtain
the total cloud absorption coefficient used for calculating
the IR emissivity. We determined the occurrence
frequencies for the cloud types in the CRM simulation
every 5 min. Cloud type occurrence frequency is defined
as the fraction of model columns that contain each cloud
type.

The specified equivalent diameters for cloud ice
crystals used in the CRM radiation calculation are
uncertain. They are based on retrievals for thin cirrus
(Mace et al. 2001). Using smaller diameters could
change cloud type amounts, e.g., increase thick high-top
cloud amount (type 4). More accurate values from
observations are desired. It would be useful to quantify
the uncertainty in the CRM results caused by the
uncertainty in specified droplet/crystal size.

4.2 Cloud Radiative Forcing

The “cloud radiative forcing” (CRF) is defined to be
the difference between the radiative flux absorbed under
all-sky and clear-sky conditions

(2)

where is outgoing (reflected) solar radiation, and

is outgoing longwave radiation, the suffix “clr”
indicates the clear sky fluxes and no suffix refers to all-
sky fluxes. The first and second parts of the right-hand-
side of Eq. (2) are, respectively, the negative shortwave
CRF and positive longwave CRF. By definition, the CRF
measures the effect of clouds on radiation budget.

4.2.1 Satellite Observation

Using half-hourly Minnis pixel-level data, we
averaged the TOA LW flux and SW albedo over the
pixels that are within SGP variational analysis domain
and either detected as clear or cloudy with a reliable
cloud property retrieval, to get the area-averaged LW flux
and SW albedo for all-sky, clear-sky, and each of the
eight cloud types. During twilight, the SGP variational
analysis domain is partly sunlit and SW albedo is
averaged over sunlit pixels only. The fractional areas for
clear sky and for each of the eight cloud types are also
computed. We then linearly interpolated the area-
averaged quantities in time to get TOA LW fluxes, SW
albedos, and the fractional areas for all-sky, clear-sky,
and cloudy-sky at one-hour intervals. Since the clear-sky
area-averaged LW flux and SW albedo are needed for
the CRF calculations at each hour, the values at the two
available times closest to the interpolated time were
used for interpolation. The hourly averaged SW upward
flux ( ) was calculated from the SW albedo ( ),
using

(3)

where is the solar insolation. We used the following
formula to calculate :

(4)

where (1366 Wm-2) is the solar constant at the mean
sun-earth distance ( ), is the instantaneous sun-
earth distance, is the hourly averaged solar zenith
angle. For each hour of the IOP, the values of
and at the SGP Central Facility (CF; latitude
36.61oN, longitude 97.49oW) were computed by
integrating over six evenly-spaced time intervals, i.e.,
each time interval is 10 min.

4.2.2 SCM and CRM

We diagnosed the LW and SW fluxes at the TOA
from the cloud and atmospheric profiles simulated by the
CRM and the SCM using the radiative transfer (RT)
model developed by Fu and Liou (1992, 1993). This
broadband radiation scheme integrates the -four
stream model for radiative transfer in nonhomogeneous
atmosphere, the correlated -distribution method to
account for nongray gaseous absorption, and the
scattering and absorption properties of spherical liquid
droplets and nonspherical ice crystals in 6 shortwave

(0.2 - 4.0 ) and 12 longwave (2200 - 1 cm-1) bands.
The model includes absorption due to H2O, CO2, O3,
N2O, and CH4 in the LW and by H2O, CO2, O3, and O2 in
the SW. For liquid-water clouds, a parameterization for
the single-scattering properties is based on Mie
calculations with a mean effective radius to account for
the cloud droplets size distribution for radiative
calculations. The single-scattering properties of non-
spherical ice crystals are considered with an equivalent
ice diameter and ice mixing ratio as inputs. The required
inputs to the RT model include the surface SW spectral
albedos, the surface IR spectral emissivities, and the
surface skin temperature, as well as the profiles of
hydrometeor mixing ratios predicted by the models and
the specified effective sizes for cloud droplets and ice
crystals. The effective sizes are specified the same way
as described in section 4.1. The time interval is 5-min for
the CRM and 1-hr for the SCM. Note that the RT
calculation was performed for each of the SCM subgrid
columns determined by the ISCCP simulator.

The 3 hr SGP domain-averages of the broadband
downward ( ) and upward ( ) LW fluxes at the

surface measured by the SIROSs were used to diagnose
the broadband albedo ( ). We linearly fit the as a

function of (where is the solar zenith angle)

and used the to obtain the spectral albedos which are
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, with = (0.428, 1.507, 1.542) for wavelength

intervals of (0.2 - 0.7, 0.7 - 1.3, 1.3 - 4.0) m,
respectively. This corresponds to a surface that is 80%
grass and 20% shrub (Q. Fu 2003, personal
communication). The 3 hr calculated using Eq. (1),

which represents a CRM/SCM domain-average, was
interpolated to get values at 5 min intervals for the CRM
and 1 hr for the SCM. At each time the same value of

was used for all of the CRM grid/SCM subgrid columns.
The TOA LW and SW all-sky fluxes are simply the

fluxes averaged over the entire CRM/SCM domain. To
get the TOA clear-sky fluxes, we averaged the fluxes at
the columns which were clear or contained cloud with

less than 0.1. Including clouds with less than 0.1 in the
clear-sky fluxes calculation is reasonable since most of
these optically thin clouds were missed by the satellite
retrievals. The cloud amount and TOA fluxes from each
of the eight cloud types were also determined for each
time. We computed the overcast LW and SW CRFs as
well as the LW, SW, and net CRFs for each cloud type in
the same way as for the Minnis data.

5. RESULTS

5.1 Cloud Radiative Forcing

We provide the net, LW, and SW CRFs by all clouds
averaged over the 14-day subperiods A, B, and C from
the satellite observation and the two simulations in Table
1. The net CRF by all clouds during the ABC subperiods

is -5 Wm-2 (Minnis), 0 Wm-2 (CRM), and 4 Wm-2 (SCM),
respectively. The LW CRF estimated from the satellite

observations is 38 Wm-2, greater than that from the CRM

(31 Wm-2) and the SCM (30 Wm-2). The SW cooling

effects of clouds in the two simulations (-31 and -26 Wm-

2 for the CRM and the SCM, respectively) were weaker

than those observed (-43 Wm-2). This comparison is
equivalent to the traditional method used to evaluate
GCM climate: comparing the monthly averaged TOA
fluxes and/or CRFs from GCMs with observations. The
numbers like those shown in Table 1 are ‘net’ results for
all cloud types. It is very likely that some cloud types are
represented better than other cloud types in a model. It
is also possible that one cloud type causes errors in
CRFs which are opposite in sign to the errors due to
other clouds. One cannot tell from such a comparison
which cloud types are the major contributors to the
model’s errors in CRFs and hence cannot get much
useful guidance for model improvement.

Fig. 3 presents a comparison among the
observation and the two simulations of the net CRFs of
the eight cloud types. The CRM results are closer to the
satellite observations than the SCM results for most
cloud types except for the optically thin high-top clouds

(type 2), for which the observational net CRF is between
the two models’ results. Both the observation and the
CRM results show that optically thin ( < 9.4) high-top
clouds (types 1, 2, 3) had a warming effect and all other
cloud types had a cooling effect. The CRM cloud types
had weaker effects than those observed with about

Wm-2 differences except for type 4 (about +5 Wm-2). A
few weaknesses of the SCM results can be found from
Fig. 3. One is that the thick high-top clouds (type 4) had
a warming effect, as opposed to the satellite observation
and the CRM results which show cloud type 4 had the
largest cooling effect among all cloud types. Another
weakness in the SCM simulation is that the thin low-top

clouds (type 7) had more cooling effect (7 Wm-2) than

the satellite observation (2.5 Wm-2) and the CRM result

(0.5 Wm-2). Third, very few thick middle-top clouds (type
6) and no thick low-top clouds (type 8) were simulated by
the SCM so that their CRFs were zero. According to the
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Fig. 3. The net CRFs of the eight cloud types from the
satellite observation (triangles), the CRM (squares) and
the SCM (crosses) simulations during the 14-day
subperiods A, B, and C.

TABLE 1. Cloud radiative forcings (W/m2) averaged over
the 14-day subperiods A, B, and C from the Minnis data,
the CRM and SCM simulations.

LW
CRF

SW
CRF

Net
CRF

Minnis 38 -43 -5

CRM 31 -31 0

SCM 30 -26 4



satellite observation and the CRM, those clouds had a 2

or 1 Wm-2 cooling effect.
The net CRFs are determined by the sum of LW and

SW CRFs. The occurrence frequency and times when
clouds present influence both LW and SW CRFs. In
addition, LW CRF is mainly determined by the effective
radiating temperature difference between the cloud and
the surface while cloud optical depth is the most
important factor determining SW CRF. Errors in LW CRF
may indicate defects in the temperatures (vertical
locations) of cloud layers while errors in SW CRF may be
more related to the representation of cloud microphysical
processes. Fig. 4 shows the LW CRFs of the eight cloud
types from the satellite data and the two simulations. The

CRM’s values are at most 2 Wm-2 smaller than the
observation. They both show strong warming effects by
high-top clouds, particularly the deep convective clouds
and closely associated thick anvil clouds (type 4), and
negligible warming effects by clouds with middle- and
low-tops. Compared to the satellite observation and the
CRM result, the SCM cloud type 4 had too little (about
one fourth) warming effect and its type 2 (thin high-level
clouds) had too much (twice) warming effect.

Similar to Fig. 4, Fig. 5 shows the SW CRFs of the
eight cloud types. Obviously, thick high-top clouds were
the dominant contributor to the total SW CRF as both the
observation and the CRM suggested. Most of the CRM
cloud types had lesser cooling effects with about 1 or 2

Wm-2 differences from the observation, except for the

type 4 the difference was about 7 Wm-2. These
differences are within the range of uncertainty of the
satellite observation. It is obvious that the SCM cloud

type 4 had much weaker cooling effect (1 Wm-2) than the

satellite (22 Wm-2) and the CRM (15 Wm-2). The cooling
effects of the SCM cloud types 2 and 7 were about 4

Wm-2 larger than the satellite.
We conclude that the CRM performed better than

the SCM in simulating the radiative effects of various
cloud types. The major weakness found in the CRM is

that the thick high-top clouds (type 4) had 7 Wm-2 lesser

SW cooling and 2 Wm-2 lesser LW warming than the
observation. The SCM seems to have difficulties in
simulating correct radiative effects of cloud types 4 (thick
high-top clouds), 2 (optically thin high-top clouds), and 7
(optically thin low-top clouds). Compared to the
observational results, the SCM’s thick high-top clouds
had too little LW warming effect and an even smaller SW
cooling effect. As a result, the SCM cloud type 4 had a
net warming, as opposed to a cooling effect seen in the
observations and the CRM. The SCM cloud types 2 had
more significant effects in both LW (warming) and SW
(cooling) and their net effect is about the same as the
observation estimates. The SCM cloud type 7 had too
strong cooling effect than the observations. We have
shown that looking at the CRFs of different cloud types
provides more information about the models’
performance than only examining the CRF by all clouds.
The errors in the LW and SW CRFs for a certain cloud
type could be caused by many possible reasons, such as
the defects in the simulated cloud amount, the incorrect
timing that the clouds presented, as well as the
weaknesses in the temperatures (vertical locations) and
optical properties of the clouds. To reveal the possible
reasons causing the weaknesses found in the simulated
CRFs, we examined the overcast CRFs and the cloud
amount of each cloud type.
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Fig. 4. The LW CRFs of the eight cloud types from the
satellite observation (triangles), the CRM (squares) and
the SCM (crosses) simulations during the 14-day
subperiods A, B, and C.
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Fig. 5. The SW CRFs of the eight cloud types from the
satellite observation (triangles), the CRM (squares) and
the SCM (crosses) simulations during the 14-day
subperiods A, B, and C.



5.2 Overcast Cloud Radiative Forcings

The overcast CRF of a cloud type is the CRF that
the cloud type would have if it covered the whole sky, i.e.,
the cloud amount of that type is one. By definition, the
overcast CRF is mainly determined by cloud-top
temperature/pressure in LW and cloud optical depth in
SW, and the impacts of cloud amount are excluded.

5.2.1 Overcast LW CRF

The overcast LW CRFs of the eight cloud types
estimated from the satellite data and the two simulations
averaged over the 14-day subperiods A, B, and C are
shown in Fig. 6. It is clear that the CRM overcast LW
CRFs are almost the same as those observed, except

they are about 10 Wm-2 larger for type 3. All three
datasets show the dominant effects of the thick high-top
clouds (type 4). Compared to the satellite observation,
the overcast LW CRFs of the SCM’s cloud types 2, 3,
and 4 (high-top clouds with optical depth greater than

1.3) were about 30 Wm-2 smaller and that of its thin

middle-top clouds (type 5) was about 30 Wm-2 larger.
We calculated the mean, standard deviation, mode,

and median of the frequency distribution of cloud-top
pressure for each cloud type using the observational
data, and the CRM and SCM results (Table 2). The CRM
cloud types 2, 3, 4, 6 and 7 seems to have tops located
lower than the satellite observations. This infers that their
overcast LW CRFs could be lesser than the
observations. However, their overcast LW CRFs (Fig. 6)
are about the same as the observations. The reason is
that the air temperatures were underestimated in the
CRM simulation compared with the sounding data. The

CRM underestimated the temperature by about 3 oK at

600 to 200 mb and by 2oK at 800 to 600 mb, which could

contribute to about 10 Wm-2 more overcast LW CRF.
The SCM cloud type 4 had tops at lower heights and

warmer temperatures than the satellite data and this
could contribute to its lesser overcast LW CRF. The lower
overcast LW CRFs of the SCM cloud types 2 and 3 can
hardly be explained by their cloud-top pressure
distributions indicating other factors influencing overcast
LW CRFs. The SCM cloud type 3 had more small values
of optical depth than the observation, as will be shown
later in this section. The smaller cloud optical depth
could decrease its overcast LW CRF due to the
transmission of surface radiation through the cloud
layers. At the tops of the cloud types 2, 3, and 4 (200 to

250 mb, Table 2) the SCM temperatures are about 6 oK
warmer than the sounding data, which could contribute

to about 15 Wm-2 lesser overcast LW CRF, i.e. about half
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Fig. 6. The overcast LW CRFs of the eight cloud types
from the satellite observation (triangles), the CRM
(squares) and the SCM (crosses) simulations during the
14-day subperiods A, B, and C.
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of the differences shown in Fig. 6. The Fig. 1 in Luo et al.
(2004) shows the temperature biases for the CRM and
SCM. The SCM cloud types 5 had variations (standard
deviations) of cloud-top pressure that were too small.
However, their tops are not higher than the observations
and the CRM so that it is not clear why they had too
strong overcast LW CRF (Fig. 6).

5.2.2 overcast SW CRF

For the overcast SW CRFs, we compared the
daytime portion (0800 to 1700 local time) averages
during the subperiods A, B, and C (Fig. 7). Data at
twilight were excluded from the averaging on purpose
due to larger uncertainties in the satellite retrievals
around twilight. The CRM results are about the same as
the observation except that the absolute value for its

thick low-top clouds (type 8) was about 60 Wm-2 smaller.
Except for the very thin high-top clouds (type 1) the
overcast SW CRFs of the SCM’s cloud types were
significantly different from the satellite observations. In
the SCM simulation, the overcast SW CRFs were too
small for the high-top cloud types (particularly type 4),
while they were too large for thin clouds with middle- and
low-tops (types 5 and 7). No cloud types 6 and 8 (thick
clouds with middle- and low-tops, respectively) were
simulated by the SCM during the averaging periods.

The overcast SW CRF of a certain cloud type is
mainly determined by the cloud optical depth because
optically thicker clouds reflect more solar radiation (i.e.
have larger SW albedo) than thinner ones. However, the
diurnal cycle variations of solar zenith angle ( ) play a
role, also, as suggested by Eqs. (3) and (4). For

example, clouds present at noon have larger overcast
SW CRFs than they would have in the early morning or
late afternoon, and night time clouds have no effects on
SW radiation. To separate this effect of from that due
to the cloud optical depth variations, we used a constant

, equal to the daytime average value, but with the solar
constant reduced by the day fraction, to diagnose the
overcast SW CRFs. We call this method “constSZA”.
The overcast SW CRFs obtained using this method (Fig.
8) are about half of their counterparts in Fig. 7. This is
because a diurnally average solar radiation was used in
the “constSZA” method and the values shown in Figs. 7
and 8 are daytime averages. The differences between
the models and the observations shown in Fig. 8 should
be multiplied by a factor of about two when compared
with those shown in Fig. 7. The differences shown in Fig.
8 between the CRM and the observations are larger for
optically thin than thick cloud types (except type 8). This
indicates that the distributions of cloud optical depth in
the CRM are simulated better for thick clouds than for
thin clouds. The CRM errors for thin clouds in Fig. 8
(constSZA), when multiplied by two, are larger than
those in Fig. 7. We infer from this that the errors in
overcast LW CRFs of thin clouds caused by wrong
present times partly cancelled out those due to
unrealistic optical depth distribution. Under the same
constant solar zenith angle, the SCM cloud types 2, 3,
and 4 would have closer overcast SW CRFs to the
observation than they had under diurnally varying .
However, for the cloud types 1, 4, 5, and 7, the SCM
values would still be significantly different from the
observation. This suggests that (a) cloud types 1, 4, 5,
and 7 had different optical property distributions from the
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Fig. 7. The overcast SW CRFs of the eight cloud types
from the satellite observation (triangles), the CRM
(squares) and the SCM (crosses) simulations during the
14-day subperiods A, B, and C.
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Fig. 8. Similar to Fig. 7, but the overcast SW CRFs were
obtained using a constant solar zenith angle, equal to
the daytime average value, with the solar constant
reduced by the day fraction.
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observation so that even when they were simulated at
the correct times, their overcast SW CRF would not be
correct; (b) the SCM cloud types 2 and 3 had more
reasonable distributions of optical properties than other
cloud types, but the SCM did not always simulate their
presence at the correct times.

The normalized frequency distributions of cloud
optical depth ( ) for each cloud type during the daytime,
except for types 6 and 8 since the SCM did not simulate
any of them during the daytime portion of the 14-day
subperiods, are shown in Fig. 9. Compared to the
satellite data, the distributions of for very thin high-top
clouds and thin middle-top clouds (types 1 and 5) in the
SCM were skewed towards larger . For the thick high-
top clouds (type 4), the optical depths produced by the
SCM were too small and their distribution was too
narrow. These can explain why the overcast SW CRFs
produced by the SCM are too large for types 1 and 5,
and too small for type 4 (Fig. 8). The distribution of
cloud type 7 (thin low-top clouds) was too narrow and
lack large values. This is puzzling, because
unrealistically small values of would result in overcast
SW CRFs that are too weak, which is opposite to what is
shown in Fig. 8.

5.3 Cloud Type Amounts

Cloud amount influences CRF for obvious reasons.
The production of correct cloud optical properties and
temperatures does not mean that the correct CRFs are
produced, unless the cloud occurrence (frequency and
timing) is also correctly simulated. Using the 3 hr time-
series of the eight cloud type amounts during the
subperiods A, B, and C, we computed the temporal
correlations between the simulations and the satellite
observation, as well as the simulated standard
deviations normalized by those from the observation.
The results are provided by Table 3. The CRM
underestimated the occurrences of high-top clouds
(types 2, 3, and 4) and of thin clouds with middle- and
high-tops (types 5 and 7) compared to the satellite data.
This contributed to lesser CRFs of these cloud types as
shown in Figs. 4 and 5. Too large a fall-speed of large ice
crystals (“snow”) could contribute to lower cirrus cloud
amount in the CRM. The low vertical resolution in the
middle and upper troposphere of the simulation (600 to
800 m) and of the large-scale forcing data (50 mb) could
miss some shallow clouds. Detrainment source of cloud
ice could be underestimated due to too much graupel
formation in simulation. The underestimation of the
CRM’s thin clouds at mid- and low-level could be partly
due to too low horizontal resolution used (2 km), and
partly because of neglecting the subgrid-scale
condensation.

The SCM overestimated the occurrences of thin to
moderate high-top clouds (types 2 and 3, by 0.11 and
0.03 respectively) and underestimated that of thick high-
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Fig. 9. The frequency distributions of cloud optical depth for the six cloud types from the satellite observation (red), the
CRM (green) and the SCM (blue) simulations during the 14-day subperiods A, B, and C. The panels from left to right at
the top are cloud types 1 and 2, at the middle are cloud types 3 and 4, and at the bottom are cloud types 5 and 7.
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top clouds (type 4, by -0.07), which contributed to CRFs
that were too strong and too weak, respectively (Figs. 4
and 5). The radiative effects of convective clouds are
neglected in the SCM simulation and our analysis. Deep
convective clouds, if included in the SCM analysis, would
be classified as cloud type 4. This could be one reason
for the SCM’s underestimation of cloud type 4’s amount.
Neglecting the radiative effects of convective clouds in a
GCM is probably reasonable when averaged over a long
period (one month) and a large area (global). However, it
may be necessary to include their effects if one focuses
on the local CRFs during short periods when convective
activity frequently happens as in this case. Another
reason is closely related to the way that cumulus
detrainment is represented in the SCM. In the SCM,
cloud condensate is detrained into a single model layer
at a time and spreads to entire grid area within one time
step, i.e. cloud fraction at the detrainment layer is one.
These detrainment-formed clouds have the same
thickness (the SCM’s grid vertical interval). In reality (and
the CRM), detrainment occurs over thicker layers at a
time. The thicknesses of the detrainment-associated
clouds decrease with the distance away from the
convective source, i.e., there is a wider range of
distribution of cloud physical and optical thickness, i.e.,
cloud types. The SCM’s inability to represent multiple
cloud types formed by detrainment from cumulus tops
could result in underestimation/overestimation of the
amount for thick/thinner high-top clouds. One major
conclusion from the recent model intercomparison
project organized by the ARM Cloud Parameterization
and Modeling Working (CPM) Group is that the climate
models overestimate optically thick ( greater than 23)
clouds at all altitudes (Zhang et al. 2004). All of the 10
GCMs participated in this model intercomparison project
use one of the mass flux-form schemes to parameterize
the deep convection (Tiedtke 1989, Gregory and
Rowntree 1990, Gregory and Allen 1991, Emanuel 1991,
Moorthi and Suarez 1992, Del Genio and Yao 1993,
Zhang and McFarlane 1995). Detrainment of condensate
at multiple layers is included as a source term for the
prediction of stratiform cloud condensate in these
convection parameterization schemes. We suspect the
overestimation of thick clouds is closely related to the
parameterization of cloud condensate detrainment.

The CRM simulated temporal correlations with the
observation were higher for all cloud types except type 2
than the SCM. Both the CRM and the SCM results show
that thick high-top clouds had the best correlations with
the observation among all cloud types (CRM 0.64 and
SCM 0.48), while very thin high-top clouds had the worst
correlations (CRM 0.18 and SCM 0.04). This suggests
that the two models could simulate the generation of
deep convective clouds (and the associated thick anvil
clouds) with some success (though improvement is
desired). However they had more difficulties in
representing the formation and evolution of thinner high-
top clouds. The SCM had very poor correlations with the

observation for cloud type 5 (0.06) and 7 (-0.06),
indicating that the representation of the mechanisms
generating/maintaining the middle- and low-top clouds in
the SCM needs improvement. The SCM simulated too
much temporal variability in the occurrences of cloud
types 2, 3, and 5.

5.4 Mean and Root-Mean-Square Errors

We list the mean values over the 14-day subperiods
of cloud amounts, CRFs, and overcast CRFs by all
clouds from the Minnis data, the CRM and SCM
simulation results in the first 3 columns of Table 4. The
4th and 5th columns of Table 4 contain the differences
between the averages from the simulations and the
Minnis data. The 6th and 7th columns provide the root-
mean-square errors by cloud types in both the CRM and
the SCM simulations. Times near twilight were excluded
in the averaging for daytime and night time cloud
amounts, but included in the all day (24 hr) averaging.
The SW overcast CRFs are daytime averages.
Compared to the satellite observation, the SCM had the
same cloud amount when averaged over the 14-day

τ

TABLE 4. Means, mean errors, and root-mean-square
errors for cloud amount, cloud radiative forcing (CRF),
and overcast CRF. The first 3 columns contain the mean
values from the satellite observation, and the CRM and
SCM simulations, respectively, by all clouds during the
14-day subperiods A, B, and C. The 4th and 5th columns
are the mean errors by all clouds in the CRM and SCM
simulations, respectively. The 6th and 7th column are the
rms errors by cloud types. For cloud amounts, results
during all day (24 hr), daytime, and night time are
provided. For overcast SW CRFs, the values shown are
daytime averages. The last row contains the overcast
SW CRFs diagnosed using a constant solar zenith
angle, equal to daytime average value, but with the solar
constant reduced by the day fraction.

mean mean error rms erro

obs CRM SCM CRM SCM CRM SC

cloud
amount
(%)

24 hr 48 35 48 -13 0 6 1

day 42 34 51 -8 9 11 1

night 52 34 49 -18 -3 12 2

CRF
(W m-2)

net -5 0 4 5 9 5 1

LW 38 31 31 -7 -8 4 1

SW -43 -31 -27 12 17 8 2

over-
cast
CRF
(W m-2)

LW 66 70 57 4 -9 18 6

SW 186 170 155 -16 -31 41 24

SWsza 85 103 107 18 22 58 16



subperiods because it overestimated the cloud
occurrence in daytime while underestimated it during
night. The CRM simulation underestimated the cloud
occurrence in both daytime and night time. Based on the
mean errors only, one may conclude that the SCM did a
better job in simulating the cloud occurrence than the
CRM did. However, the SCM rms errors by cloud types
were about twice as large as those from the CRM in both
day and night. This suggests that the errors for different
cloud types cancelled one another out in the SCM
simulation, and the CRM actually performed better than
the SCM.

The mean errors in the net CRF were 5 (CRM) and

9 (SCM) Wm-2. The rms error of net CRF by the SCM

cloud types was about twice of the CRM’s (11 vs 5 Wm-

2). The SCM had about the same mean error in LW CRF

as the CRM (-8 vs -7 Wm-2), and larger mean error in

SW CRF (17 vs 12 Wm-2). However, its rms errors in LW
and SW CRFs by cloud types were about three times of
the CRM’s. This shows, again, that the CRM simulated
the radiative effects of various cloud types better than
the SCM did and that mean errors in CRFs by all clouds
can provide very limited, sometimes even misleading,
information about a model’s clouds.

6. SUMMARY AND DISCUSSIONS

The TOA radiative effects and occurrence
frequencies of various cloud types in 29-day simulations
performed by a SCM and a CRM using large-scale
forcing data from the ARM variational analysis at the
SGP site were diagnosed. The results were compared
with those estimated from the pixel-level satellite
observations. During the simulation period, most clouds
were observed by both the satellite and the millimeter
cloud radar to have their tops at high-level (above 440
mb). We grouped the clouds into eight types defined by
their total optical depth and cloud top pressure with four
at the high-level and two at the mid- and low-levels,
respectively. For this particular case, the CRM is found to
simulate CRFs and occurrence frequencies of the eight
cloud types much realistic than the SCM, as measured
by the rms errors caused by cloud types. The SCM
quantity that agrees most closely with the observations
and CRM is total net CRF, a quantity that is tuned in
GCMs to obtain a global TOA energy balance (but not a
local balance as in this case). However, when the SCM’s
net CRF is decomposed into cloud type components, it is
evident that the total net CRF is a result of compensating
errors in the CRFs of individual cloud types: the high
clouds have too great a warming effect, while the low
clouds have too great a cooling effect.

We found that the SCM simulated too few
occurrences of thick ( greater than 9.4) high-top clouds
(type 4), and this cloud type had a optical depth
distribution that is too narrow lacking large values of .
As a result, these thick high-level clouds had a net

warming effect at the TOA in the SCM as opposed to the
observation and the CRM which show a net cooling
effect. We suspect that the too few occurrence of the
SCM’s thick high-top clouds is partly due to the
unrealistic representation of detrainment of cloud
condensate from the tops of cumulus towers, and partly
because of neglecting convective clouds in radiation
calculation. The SCM overestimated the occurrence of

thin ( between 1.3 and 3.6) cirrus clouds (type 2) and

thin ( less than 9.4) middle-top clouds (type 7), and
hence overestimated their radiative effects. Both the
SCM and the CRM simulated the occurrences of thick
high-top clouds which are correlated better with the
observation than the simulated thinner high-top clouds.
The major weakness found in the CRM simulation was
the underestimation of the occurrences for high-top
clouds and thin clouds with middle- and low-top, though
the CRM was found to simulate CRFs and overcast
CRFs comparable to the observation. Possible reasons
are discussed in Section 5.3. We have not explored the
physical processes which are responsible for the errors
found in the models, though it is essential to finally
improve the models’ performance. The SCM and CRM
are used as examples to demonstrate the usefulness of
the new evaluation method, which is the major objective
of this study.

Clouds influence the radiation budget through their
greenhouse (warming) and albedo (cooling) effects. The
former effect is mainly determined by the cloud-top
temperature, the latter by cloud optical depth, while
cloud occurrence frequency (amount and timing) has an
impact on both LW and SW. As demonstrated by other
studies and this study, the net radiative effects by
different cloud types are not the same due to the
differences in their top temperatures, optical depths, and
cloud occurrence frequencies. The formation and
evolution of cloud types is related to various physical
processes. Some processes may be more responsible
for certain cloud types than other processes. Errors due
to certain cloud types probably compensate those by
other cloud types resulting in small net errors. As found
very recently by the Cloud Parameterization and
Modeling Working Group within the ARM program, 10
GCMs simulated incorrect cloud type amounts:
overestimated the occurrence of thick clouds ( greater
than 23) and underestimated that of thinner clouds. This
means that the GCMs simulated distributions of cloud
types are different from those observed. However, they
simulated better CRFs at the TOA and their seasonal
variations than cloud types due to compensatory errors
(Zhang et al. 2004). In order to essentially improve the
representation of clouds and their radiative effects in a
model (CRM, SCM/GCM), we cannot rely on the
compensation of the errors. Efforts must be made toward
an improvement for each cloud type. Therefore, it is
necessary to evaluate the model in terms of cloud types,
in addition to the averages by all cloud types. The most

τ

τ

τ
τ

τ



problematic cloud types can be revealed using this
method.

The most problematic cloud types found in a model
would be the modeler’s target for further study. The
efforts should then be made toward revealing reasons for
the weaknesses in simulating those cloud types. One
can integrate this method, i.e. examining models’ cloud
types using km-scale observations, with the compositing
techniques and case studies. By compositing
observations and model results using some criteria that
describe the main mechanisms in cloud generation,
maintenance, and/or decay, a first link to the possible
reasons for model problems is established. Comparing
simulations for real cases performed by SCMs and
CRMs can probably identify the SCM’s problems. In
addition, idealized simulations using CRMs and/or SCMs
may be set up specially for better understanding some
processes and/or for revealing errors of their
representation in models.
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