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1. INTRODUCTION
ground and so has a footprint where it contacts the
ground. Within such a footprint the shear is
enhanced up to about half the height of the TEAL
structure. This shear varies in direction, the flow
having a radial component inwards towards the seat
of the next ejection as well as a mean component in
the direction of the larger TEAL structure. A whole
cohort of new TEAL cascades grows within this
footprint, each with power and direction reflecting
the shear strength and direction at its particular
position within the footprint. Thus momentum is
handed down from each larger TEAL structure to a
whole cohort of smaller TEAL structures growing
within its footprint. The members of the new cohort
do the same thing, handing the momentum on down
to further cohorts of even smaller TEAL structures,
and so on. Since the evolutionary time scale of
each eddy is the inverse of the shear that drives it,
each new cohort of TEAL structures has a faster
cycle time than the last, so smaller TEAL
structures can adapt continuously to changing
conditions within footprints, even as the larger TEAL
structures develop. The result is a fractal structure
in the momentum transport process, with
momentum being handed down to larger and larger
numbers of smaller and smaller TEAL structures at
each scale.

In a recent paper McNaughton (2004) presented
a new model for the structure of turbulence in the
unstable atmospheric surface layer. This model
describes turbulence in the ASL as a self-organizing
system of coherent structures called 'TEAL'
(Theodorsen ejection amplifier-like) structures. Each
TEAL structure is initiated by a sharp updraft from
near the ground, called an ejection. The oncoming
sheared flow lifts over and curls inwards behind
each ejection in a vortical motion about a hairpin-
shaped core. This motion folds in on itself so that
fluid within its arc converges and, with nowhere else
to go, squirts outwards and backwards into the flow
as a second, larger ejection. The individual energy
and form of each TEAL structure depends on the
local conditions in the flow where it develops, and
only the best-formed TEAL structures produce
ejections that are powerful and upright enough to
initiate further, larger TEAL structures. An upscale
sequence of TEAL structures constitutes a TEAL
cascade. Wall-bounded shear turbulence consists
of inter-acting, or ‘competing’ TEAL cascades where
only the most symmetrical and powerful TEAL
structures successfully initiate another cycle. TEAL
cascades are initiated near the ground at small
scale and develop upwards, driven by the local
shear.

An essential feature of this process is that any
pattern imposed on the system at large scale is
transmitted down through the scales as a mean
property of larger and larger numbers of smaller
and smaller eddies. Thus a gust of wind is both the
motion of a large eddy and the co-ordinated
motions of many smaller eddies near the ground. In
a convective outer layer the largest eddies scale on
outer parameters of the flow and create large-scale
variations in shear across the surface layer. This
outer-scale pattern is then passed down through the
cohorts of smaller and smaller TEAL structures
towards the ground, where it causes low-frequency
fluctuations in the shear stress. This is so even
while all the momentum is transmitted by eddies
whose individual development depends solely on
the very local conditions in the flow and so scale on
inner parameters of the flow.

Empirical evidence, principally from the uw
cospectrum, shows that the local structure of the
turbulence is independent of stability throughout the
unstable range. This is incompatible with Monin-
Obukhov similarity theory. The purpose of this
paper is to use the TEAL model to predict the
budget of turbulence kinetic energy (TKE) in the
unstable atmospheric surface layer, and to
compare this with experimental results.

2. HAND-DOWN IN SCALE OF MOMENTUM

Before proceeding we must first establish some
basic characteristics of the way momentum and
TKE are transported by the turbulence. TEAL
structures, being momentum - transporting
structures, move faster air downwards  and slower
air upwards within their volume. This changes the
distribution of shear within them, decreasing it in
their  upper parts  and  increasing  it in their  lower
parts.  Each  TEAL  structure  is  'attached'  to  the

This hand-down of momentum is accompanied
by a hand-down of kinetic energy, so the ASL is
powered partly by kinetic energy handed down from
above and partly by energy produced by buoyancy
acting within it.
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3. The TKE budget
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Consider now the TKE budget of an unstable
ASL beneath a convective outer layer. This budget
can be written as
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where the symbols have their usual significances.
Our proposition is that the structue of the
turbulence in the unstable ASL is insensitive to
buoyancy. That is, we propose that the statistics of
the forms and numbers of the eddies, but not their
velocity scale, are insensitive to instability. We can
non-dimensionalize (1) by dividing through by

u
*

3/kz , where u
*
 is friction velocity, k is von

Karman's constant and z is observation height.
Thus
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z
L
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where the two TKE production terms on the left of
(1) now have reversed signs and appear on the right
of (2). In this form the terms are called shear
production, buoyant production, turbulent transport,
pressure transport and dissipation rate,
respectively.

Figure 1.  TKE budget for unstable surface layers
from Högström (1990) as summarised by
Wyngaard (1992). Experimental results fall within
the bands indicated. Shear production is shown as
a band rather than a line to more fairly represent
the results summarized by Högström (1996).3.1  PRESSURE TRANSPORT

 Though the structure of the turbulence is
unaffected by buoyancy we must, nevertheless,
accept that buoyancy forces will act on the
turbulence, and that they will tend to accelerate
warmer air parcels upwards and cooler ones
downwards. If this has no effect on the structure of
the turbulence then buoyancy forces must be
opposed by equal and opposite pressure reaction
forces, at least on average. That is to say, the
production of gravitational potential energy must be
matched by an equal production of pressure
potential energy. The pressure transport term then
equals the buoyant production term in (1) and (2).

the surface layer, with none being transferred
directly to rigid land surfaces.

We can write the flux of kinetic energy as
w (u2 + v2 + w2)/2. The terms on the left of (1) are
obtained by decomposing the velocities in this
expression into mean and fluctuating parts and
setting w  and  v  to zero, then taking the vertical
divergence. The fluctuations indicated by the
primes have two origins: one associated with the
motions of the transporting eddies within the
surface layer—the TEAL structures and their decay
products; and the other associated with the variable
forcing of the surface layer by the larger-scale
eddies of the outer layer.

This would be easy to imagine if the turbulence
were to behave like a rigid machine, with its parts
connected by gears and connecting rods. Fluids
are not so rigid so we do not expect an exact
balance of buoyancy and pressure reaction forces
at each point in the flow. We require only that local
changes in the flow brougt about by buoyancy be
compensated in the whole flow by the overriding
control exerted by the selection of TEAL structures
able to initiate next stages in the TEAL cascades.
Figure 1 shows that observed pressure transport
and buoyant production terms are equal to within
the accuracy of the published measurements, in
agreement with our model.

Almost all of the power in the spectrum of
vertical velocity is contributed by eddies that
develop within the surface layer and whose motions
scale on the inner parameters, z, and u. That is to
say, the outer-scale motions are almost horizontal
at the top of the surface layer. These outer-scale
eddies modulate the power and direction of the
TEAL cascades, but make no net contribution to
momentum transport. To handle this situation we
extend the Reynolds decomposition of the velocity
components to write

  u = u + u +u '3.2  TURBULENT TRANSPORT
  v= v +v + v'The two terms on the left of (1) together

represent the divergence in the flux of kinetic
energy downwards from the outer part of the
boundary layer. This is a negative quantity because
kinetic energy is dissipated as heat within

and
  w= w + w +w '    (3)



where components with tildes correspond to outer-
scale components while those bearing primes
correspond to inner-scale components, as
discussed by McNaughton and Laubach (1998).
Here w  and  v  are zero as before, as are the

outer-scale fluctuations of  w, so   w = 0 .
Momentum is transported entirely by inner-scale
eddies, but the momentum flux itself has a mean
value and displays an outer-scale pattern of
variation as well as showing rapid, inner-scale
fluctuations. We therefore write the streamwise and
transverse components of the instantaneous
momentum fluxes as the sum of mean, outer-scale
and inner-scale parts:
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where   v
*
2
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Since local turbulence structure is exactly the
same regardless of whether a larger-scale pattern is

superimposed or not, we expect   m = m, so we

write
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Equation (1) then becomes  u'w' = x + x+ x' ; v'w' = y + y'    (4)
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  (11)Using (3) and (4) and setting all cross-scale
covariances to zero, we obtain
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The dissipation term is parameterized this way
because the structure of the turbulence is
unchanged by instablity and the equation must
balance also for a neutral surface layer disturbed
by mechanically-generated outer turbulence, as
migh happen in a valley with topographically-
generated turbulence overhead. In effect, (11) is
just (1) but with (u

*
3 + v

*
3) replacing u

*
3 throughout.

The velocity scale of the turbulence is different, but
not its structure.

as the left side of (1), where   
x = u'w' ,   

y = v'w'

and e is TKE; e = w' (u'2 + v'2 + w'2)/2. The first and
last terms are similar to terms in (1), but in (1) the
outer-scale shear production terms are included
within the turbulent transport term, while in (5) they
are separated. The outer-scale modulation causes
extra kinetic energy to be transported down into the
surface layer, so dissipation must be enhanced
within the surface layer.

We now have the information we need to
parameterize all the terms of the TKE budget in
terms of the usual parameters plus v

*
3/u

*
3. Non-

dimensionalizing (11) using kz /u
*

3 gives the TKE

budget as

3.3  THE WHOLE TKE BUDGET
We have already found that

p = -z/L    (6)
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The mean and variable shear production terms
represent the divergence in the rate of work done by
the atmosphere above z on the whole atmosphere
below z, so these terms represent real production
of TKE. The last term in (5) has no simple physical
interpretation but is an artefact caused by doing the
double Reynolds decomposition about mean
velocities with a non-logarithmic profile. Rather than
evaluate it directly we evaluate the 'turbulent
transport' term arising from the triple
decomposition. In this we expect that  total shear
production (mean + variable) plus buoyant
production must equal dissipation. This gives

The term on the right is the dimensionless
dissipation rate
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(Mean) shear production is given by
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where the primes here indicate the inner-scale
fluctuations of the triple decomposition.

and turbulent transport (traditional definition,
including variable shear transport) by

To discuss the other terms of the TKE budget
we need more information on the variable shear
production. This involves modelling. We recall the
relationship for the mean shear production
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   (8) These with (6) define all the terms of the

dimensionless TKE budget (2).and so write
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local structure of the turbulence is unaffected by
instability, but is modulated by the larger-scale
motions originating in the outer layer. Particular
conclusions are:

• The pressure transport term in the TKE
equation represents the conversion of gravitational
potential energy to pressure potential energy
without net production of motion, and so without
altering the structure of the turbulence.

• TKE is transported down from the outer layer
into the surface layer. This has both mean and
variable components. The mean part, with its sign
reversed, is usually called 'shear production' of
TKE, while the variable part is usually included
within the 'turbulent transport term'. As a result, the
TKE budget is not closed when written in the
traditional way.

• The extra TKE transported down into the
surface layer affects transport processes but not
mean momentum transfer, so u

*
 is not the correct

velocity scale for turbulence processes in the
atmospheric surface layer.

Overall. the results support the empirical
principle of complete insensitivity of local turbulent
structure to local instability (-z/L). Further empirical
work is needed to define the limits of this principle.

Figure 2. Model predictions for the terms of the
TKE budget of the unstable atmospheric surface
layer (solid lines) with experimental results (shaded
bands) as in Fig. 1. The solid line drawn through the
dissipation band is a fitted line, assumed to result
from a statistical relationship between  v

*
3/u

*
3 and

-z/L. The other lines are calculated from this
relationship,
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4 CONCLUSIONS

The structural model of McNaughton (2004)
leads to a TKE budget for the unstable atmospheric
surface layer that is in good agreement with
published results. The model proposes that the


