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1. INTRODUCTION 
2. ALGORITHM DESCRIPTION 

Knowledge of the horizontal and vertical distribution of 
water vapor on the global scale is required for 
applications ranging from numerical weather forecasting 
to climate modeling and climate change studies.  
Because of their global clear and cloudy sky water vapor 
measurement ability, passive microwave satellite 
sensors, such as the Advanced Microwave Sounding 
Unit (AMSU), are a primary source of data for fulfilling 
this requirement.  An optimal-estimation algorithm has 
therefore been developed for the retrieval of water vapor 
profiles from passive microwave observations (Mckague 
et al, 2003). 

The 1DVAR retrieval is hosted within the Data 
Processing and Error Analysis System (DPEAS), a 
modular computing environment described in Jones and 
Vonder Haar (2002).  The retrieval is currently installed 
at CIRA with a near-realtime capability.  A major effort 
with this retrieval has been creating data feeds for first 
guess and constraining fields.  Figure 1 shows the data 
flows going into the real time system.  Current work 
focuses on obtaining and understanding the impact of an 
improved first guess water vapor profile. 

The retrieval algorithm is a physically based iterative 
optimal-estimation scheme (OE algorithm) adapted from 
the method of Engelen and Stephens (1999).  The 
algorithm can take data from AMSU-B and AMSU-A 
combined, from SSM/T-2 with a fixed temperature 
profile, or from the SSMIS instrument.  Future sensors 
can be added with knowledge of their channelization and 
noise.  A variety of parameters can be retrieved 
including profiles of water vapor mixing ratio, joint water 
vapor and temperature profiles (including surface 
temperature), and water vapor and temperature profiles 
along with microwave surface emissivities. 

The algorithm uses the method of Engelen and 
Stephens (1999) to simultaneously retrieve profiles of 
temperature and water vapor as well as cloud water path 
and surface emissivity.  It can be considered a 1-
dimensional variational data assimilation retrieval, or 
1DVAR.  Because of the highly coupled nature of the 
atmosphere and the sensitivity of microwave 
measurements to the desired retrieval parameters, more 
accurate retrievals of each can be achieved through a 
simultaneous retrieval.  Furthermore, the retrieval 
method is quite general, making it flexible in terms of 
data used and parameters retrieved.  Explorations of the 
new SSMIS data are anticipated within the next year.  
The retrieval is structured in a modular fashion, so new 
data sources, updates on instrument noise and channel 
failures, and retrieval parameters can be added easily. 

The retrieval scheme requires a first guess of the 
water vapor and temperature profiles as well surface 
emissivities at the relevant microwave frequencies.  An a 
priori distribution of the retrieval parameters is used to 
constrain a non-linear iterative optimal-estimation 
scheme which minimizes the cost function Φ  to find the 
optimal solution x, where: 

In this paper, the algorithm is demonstrated using 
data from AMSU with comparisons to a radiosonde 
matchup database over ocean.  Performance tests of the 
algorithm obtained from brightness temperatures (TB’s) 
simulated from the radiosonde data are also presented. 
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(Equation 1) This work is closely related to Joint Center for 
Satellite Data Assimilation work to estimate microwave 
land surface emissivity and understand the performance 
of the NESDIS Microwave Emissivity Model (Jones, 
Poster 3.15).  Retrieving the atmospheric overburden 
and allowing for its radiometric effect leads to a clearer 
estimate of emissivity. 

 
where x is the vector of parameters to be retrieved, xa is 
the a priori vector, y is the set of observations (Tb’s), 
F(x) is a forward radiative transfer model used to 
compute radiances given x, and Sa and Sy are the error 
covariance matrixes of the a priori data and the 
observations, respectively.  The vector of retrieval 
parameters consists of the temperature and moisture 

 



  

profiles, surface emissivity in 6 bands from 23 to 183 
GHz, and cloud liquid water in cloudy cases.  For the 
initial test of the retrieval, we focus on clear cases.  The 
presence of cloud as a constraint would best be added 
from another sensor, such as infrared or visible 
radiances.   The a priori error covariance matrix includes 
the variances of and correlations between the retrieval 
parameters, thus providing a constraint on the solution 
from a priori knowledge.  The formulation and sensitivity 
of the results to this matrix is currently under research.  
The error covariance matrix of the observations includes 
forward model errors and uncertainty in the observed 
radiances. 

For the forward radiative transfer, monochromatic 
microwave brightness temperatures are computed using 
numerical integration of the radiative transfer equation 
for a plane parallel, absorbing atmosphere together with 
Liebe’s MPM92 (Liebe and Hufford 1993) model of 
microwave atmospheric attenuation.  Only liquid clouds 
are currently included.  An analytic Jacobian is used in 
the radiative transfer model (RTM) for speed.  The 
method is modular so that an alternative RTM can be 
added if desired. 

3. RETRIEVAL RESULTS 

The channel characteristics used in this study for 
the NOAA-15 AMSU are shown in Table 1.  Note that 
that AMSU-B data were prescribed a noise value of 2 K, 
due to the residual error from the radio frequency 
interference correction used only on NOAA-15. As a 
radiosonde simulation and validation dataset, we are 
using the Comprehensive Aerological Reference Data 
Set (CARDS) radiosonde collection (Eskridge et al, 
1995). This is a quality controlled sounding dataset.  An 
example of NOAA-15 AMSU and CARDS matchups for 
January 2000 is shown in Figure 2. 

The antenna pattern correction (APC) has a 
significant effect on the results.  The AMSU-B APC is 
discussed in more detail in Poster 2.17 (Nielsen et al).  
Figure 3 shows retrieval results with and without the 
NESDIS AMSU-A APC applied.  The antenna 
temperatures were simulated by forward model 
calculations from the radiosonde data.  The atmospheric 
temperature retrievals are warmed by about 2 K by using 
brightness temperatures instead of antenna 
temperatures.  This effect feeds back into water vapor 
retrievals and may introduce error, since saturation 
vapor pressure is a nonlinear function of temperature. 

A goal of this research is to understand how the 
terms in the cost function interact and drive the solution.  
The cost function in Equation 1 consists of two terms 
which are added.  The first is the fit of the retrieval to 
what we would consider a realistic atmosphere.  The 
second term is the penalty incurred for how well the 
simulated radiances match the satellite observations.  
This term can be visualized by summing the absolute 
value of the differences of the simulated minus retrieved 
brightness temperatures for all channels used in the 
retrieval.  A map of this difference can then be displayed.  
We use 13 channels, the AMSU-A channels closer to 60 
GHz are not used.  Figure 4 shows such a map for two 

AMSU passes on August 3, 2003.  Note that the retrieval 
does a good job in reducing the modeled minus 
observed TB differences over land.  This indicates that 
the radiative transfer model is working properly.  The 
differences are larger over ocean in this case due to use 
of a fixed SST of 293 K, the use of dynamic realtime 
SST should reduce the ocean difference greatly.   
 

 

 Channel Frequency (GHz) NEDT 
(K) 

1 23.8 0.3 
2 31.4 0.3 
3 50.3 0.4 
4 52.8 0.25 
5 53.596 . 115 ± 0.25 
6 54.4 0.25 
7 54.94 0.25 
8 55.5 0.25 
9 57.290344 = f0 0.25 
10 f0 ± . 217 0.4 
11 f0 ± . 3222 .048 ± 0.4 
12 F0 . 3222 . 

022 
± ± 0.6 

13 f0 ± . 3222 . 010 ± 0.8 
14 F0 ± . 3222 . 

0045 
± 1.2 

AMSU-A 

15 89.0 0.5 
1 89.0 2.0 
2 150.0 2.0 
3 183.31 ± 1.0 2.0 
4 183.31 ± 3.0 2.0 

AMSU-B 

5 183.31 ± 7.0 2.0 
 
Table 1.  AMSU characteristics used in retrievals. 
 

A test of the effect of the assumed error of the a 
priori data is shown in Figure 5.  Simulated radiance 
data created from CARDS data.  An unrealistically low 
standard deviation of 0.1 K error was specified for the 
first guess temperature.  The retrieval is unable to move 
away from the first guess at levels above 1000 mb.  At 
1000 mb however, the retrieval does begin to perturb the 
temperature.  This indicates that the surface emissivity is 
not properly specified, and the retrieval attempts to 
compensate by adjusting the surface temperature.  This 
is a good check that the retrieval behaves as expected. 

The comparison of a preliminary version of the 
retrieval with global island and coastal radiosonde data 
for all of 2000 is shown in Figure 6.  There were 13289 
matchups.  Temperature and moisture are shown.  The 
retrievals are over ocean only in this case.  For 
temperature, the first guess (Mitch Goldberg’s NESDIS 
statistical method) performs better than the retrieval 
above 500 mb.  The top of the model atmosphere used 
here was 100 mb, this may not be enough.  In general, 
the moisture retrieval is too moist below 805 mb, and too 
dry above.   

 
 



  

Jones, A. S., and T. H. Vonder Haar, 2002: A dynamic 
parallel data-computing environment for cross-
sensor satellite data merger and scientific analysis. 
J. Atmos. and Oceanic Technol., 19, 1307-1317. 

A summary of our findings about the performance of 
the retrieval is shown below: 

 
• (Ocean) The retrieval gives too much 

moisture at low levels (< 850 mb), and too 
little at high levels. Liebe, H. J. and G. A. Hufford, 1993: Models for 

atmospheric refractivity and radio-wave propagation 
at frequencies below 1 THz. Int. J. Infrared and 
Millimeter Waves, 77, 437-471. 

• The number of iterations rarely exceeds 5 
• The radiative transfer model, adjoint and 

minimization function well 
• The emissivity solution is sensitive to the 

apriori noise in the temperature and 
moisture 

McKague, Darren S., R. J. Engelen, J. M. Forsythe , S. 
Q. Kidder, and T. H. Vonder Haar, 2003: A Passive 
Microwave Optimal-Estimation Algorithm for Near 
Real-Time Water Vapor Profiling.  Proc. of 12th 
Conf. On Sat. Meteor. and Ocean., Poster 4.14. 

• Lapse rates are sometimes superadiabatic 
over land 

• The top of the model atmosphere is 100 
mb, needs to be higher 

• Errors are not dependent on zenith angle 
or CLW (ocean) 

 

  

4. CONCLUSIONS AND FUTURE WORK  

An algorithm for the retrieval of water vapor profiles 
from passive microwave satellite observations has been 
presented.  A variety of tests with expected results have 
been applied to the algorithm. It performs as expected.  
A comparison to one year of rawinsonde data indicates 
some biases in the results.  Work is in progress on these 
items.  The algorithm holds great promise both for real 
time product generation within DPEAS, and as a testbed 
for new and upcoming sensors such as SSMIS.  The 
fusion of microwave data with cloud information from 
infrared and visible sensors holds great promise.  The 
performance of the retrieval over land surfaces is 
currently being investigated.  Microwave water vapor 
profile retrievals over land, or even TPW retrievals, have 
been hindered by poor knowledge of land emissivity.  
Related work at CIRA (see Jones, Poster 3.15) aims to 
address this issue and unlock more potential from 
passive microwave measurements.  
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Figure 1: Current dataflow into the 1DVAR retrieval.  The retrieval can be run in near realtime, or 
retrospectively.  The GDAS fields work in progress provides an improved first guess moisture profile 
over climatology which is currently used.
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retrospectively.  The GDAS fields work in progress provides an improved first guess moisture profile 
over climatology which is currently used.
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Figure 2: Matching NOAA-15 and radiosonde sites for January, 2000.  A matchup criteria of 2 degrees radius and 
2 hours was used.  Total precipitable water (TPW) of the radiosondes is shown in color, indicating a large range of 
TPW was sampled.
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Figure 2: Matching NOAA-15 and radiosonde sites for January, 2000.  A matchup criteria of 2 degrees radius and 
2 hours was used.  Total precipitable water (TPW) of the radiosondes is shown in color, indicating a large range of 
TPW was sampled.
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Figure 3:  Demonstrating the effect of the antenna pattern correction on AMSU-A 
radiances.  A roughly 2 K bias occurs in the temperature profile retrieval.
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Figure 4: Map of the initial and final sum of modeled brightness temperatures minus observations for the 13 AMSU 
channels used in the retrieval.  Note how initial differences of 50 to 100 K over land have been reduced to 10 to 20 
K.  A reduction to 0 K is not possible (or desirable) because of instrument noise.  The greater differences over 
water, such as the Gulf of Mexico, are due to use of a fixed sea surface temperature first guess of 293 K which will 
be made dynamic in future work. 

 

  

 
 



  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

Figure 5:  Test of the sensitivity of the retrieval to error estimate of first guess fields.  The 
temperature was given an unrealistically tight constraint of 0.1 K standard deviation.  Note that 
all pressure levels fall back to the first guess (the sonde value), except the 1000 mb layer.  Error 
in surface emissivity are converted to temperature profile errors.
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temperature was given an unrealistically tight constraint of 0.1 K standard deviation.  Note that 
all pressure levels fall back to the first guess (the sonde value), except the 1000 mb layer.  Error 
in surface emissivity are converted to temperature profile errors.
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Figure 6: Comparison of rawinsonde and NOAA-15 AMSU retrievals for 2000.  13289 
matchups.  A) Temperature and (B) Mixing ratio.  Different colored lines indicate rawinsonde, 
retrieval, retrieval with zenith angle less than 15 degrees, and retrieval with cloud liquid water 
less than 0.03 mm, respectively.  Temperature tetrieval first guess error from the NESDIS 
statistical algorithm also shown.   
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