
————————————————————————— 
* Corresponding author address: Robert J Conzemius, 
School of Meteorology, University of Oklahoma, 100 East 
Boyd, Norman, OK 73019-1013; 
e-mail: bconzemi@rossby.metr.ou.edu 

5.6 NUMERICAL MODELS OF ENTRAINMENT INTO SHEARED CONVECTIVE BOUNDARY LAYERS 
 EVALUATED THROUGH LARGE EDDY SIMULATIONS 

 
 

Robert Conzemius* and Evgeni Fedorovich 
School of Meteorology, University of Oklahoma, Norman, Oklahoma 

 
 
 

1. INTRODUCTION 
 
 Atmospheric convective boundary layer (CBL) 
entrainment is the downward mixing of free atmospheric 
air into the CBL as the CBL grows. Primarily, the CBL 
entrainment is driven by the buoyancy production of 
turbulence kinetic energy (TKE) due to heating of the 
lower surface or cooling at the CBL top. The effects of 
shear-generated turbulence in the CBL are secondary. 
However, cases of a purely buoyancy-driven CBL are 
rare, and in many situations, the flux of buoyancy is 
relatively weak, allowing the effects of shear-generated 
turbulence to become roughly equivalent to those of 
buoyancy-generated turbulence 
 Large eddy simulation (LES), which can resolve 
most of the energy-containing motions in the CBL, has 
become a standard tool for fundamental studies of the 
CBL dynamics. However, the spatial and temporal 
resolution needed in the LES for an adequate 
reproduction of the CBL turbulence properties is still 
beyond the limits of numerical models commonly 
employed for weather prediction purposes, as well as in 
applied climate and air pollution research. In the present 
study, we use LES to evaluate predictions of 
entrainment into the sheared CBL by numerical models 
of two types: (i) models with turbulence closure 
schemes based on Reynolds averaging, which resolve 
some vertical structure of the CBL and are commonly 
applied in numerical weather prediction (NWP) and (ii) 
models based on vertically integrated momentum, 
buoyancy, and TKE balance equations assuming a 
parameterized CBL vertical structure (the integral 
budget approach). The latter approach is widely used to 
predict integral CBL parameters (e.g., depth of 
convectively mixed layer) in applied atmospheric 
dispersion studies. 
 Previously, Moeng and Wyngaard (1989) have 
evaluated NWP turbulence closures for parameterizing 
the turbulence structure of shear-free CBLs, and Ayotte 
et al. (1996) have done the same for both sheared and 
shear-free CBLs. 
 
2. REYNOLDS AVERAGING-BASED TURBULENCE 

CLOSURE SCHEMES 
 
 Two turbulence closure schemes, based upon 

Reynolds averaging (RANS), such as used in NWP, are 
evaluated here.  The two schemes are both 1.5 order, e-
l closure schemes and therefore, both have the same 
basic formulations of the TKE equation, eddy 
diffusivities of heat and momentum, and dissipation.  
The differences between these two schemes are in the 
specification of the length scale used to close the 
problem and in constants in the expressions for the 
eddy diffusivities and TKE dissipation. 
 In the actual NWP grids used at the time of this 
writing, the grid cell size is becoming small enough that 
the implied horizontal averaging of the non-resolved 
turbulence within the grid cell may differ considerably 
from an ensemble average.  As such, the assumptions 
used in the RANS-based NWP turbulence closures may 
not hold.  This is a particularly important problem in 
contemporary NWP.  However, in this evaluation, it is 
assumed that the grid cell sizes are large enough that 
the implied horizontal averaging can be considered 
representative of an ensemble average, and the 
assumptions of a Reynolds averaging-based scheme 
will still be valid. 
 In such a case, the TKE equation has the following 
form: 
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where e is the TKE, U and V are the total horizontal 
components of the flow, u, v, and w are the turbulent 
components, p’ and θ ′  are the deviations of pressure 
and potential temperature from their horizontal 
averages, g is the acceleration of gravity, θ0  is the 
reference value of potential temperature, ε  is 
dissipation of TKE, and brackets denote averaged 
quantities. 
 The turbulent fluxes are parameterized according to 
the following hypotheses: 
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where mK  and hK  are the eddy diffusivities of 
momentum and heat, respectively.  The eddy diffusivity 
of momentum has the following general form: 
 
 α= 1/ 2

m KK e l  (6) 
 
where αK  is a constant, and l is a turbulence length 
scale.  The eddy diffusivity for heat is related to the eddy 
diffusivity for momentum through the turbulent Prandtl 
number, which generally ranges from one third to one 
under unstable conditions.  Dissipation is parameterized 
by the expression 
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where εα  is a constant.  The values of αK , εα ,  l , and 
the turbulent Prandtl number are scheme-dependent. 
 The first scheme evaluated in this study is that of 
Xue et al. (2001).  The turbulence length scale in this 
closure is dependent on the hydrostatic stability.  In 
stable conditions, the length scale is 
 
 −=

1/ 2 10.76sl e N , (8) 
 
where N is the Brunt-Väisälä frequency.  In neutral or 
unstable conditions (the boundary layer portion of the 
flow), the length scale is 
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where z  is the height, iz  is the boundary layer depth, 

and =0 0.25l .  The boundary layer depth is defined as 
the level at which a parcel, lifted from the lowest model 
grid level above ground, becomes neutrally buoyant.  
Because ul  doesn’t become small until > iz z , where 
the atmosphere is stable, the maximum of sl and ul  is 
taken.  The turbulent Prandtl number is 
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where v∆  is the vertical dimension of grid cell. The 

constants in (6) and (7) are α = 0.1K  and εα = 3.9  at 

the first grid level above ground and εα = 0.93  at all 
other grid points. 
 The scheme of Fiedler and Kong (2003), hereafter 
referred to as F&K, does not depend on the 
determination of the CBL depth. Rather, it defines the 

length scale as the geometric mean of an upward length 
scale and a downward length scale.  The upward and 
downward length scales are defined as the vertical 
distance an air parcel would travel from its original 
height, working against buoyancy forces, until all its TKE 
were expended.  Mathematically, these length scales 
are defined through the following integrals: 
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where λup  and λdown  are the vertical distances of parcel 

travel and θ *
v  is the virtual potential temperature a 

parcel would have if it ascended or descended from its 
starting level z to a new level ′z .  Once λup  and λdown  

are determined, the mixing length is ( )λ λ=
1/ 2

up downl .  
The specifications for the constants are 
α = =0.25 2 0.35K , εα = 0.5 , and =Pr 1t . 
 
3. CLOSURE SCHEMES BASED ON INTEGRAL 

BUDGETS 
 

To simplify the numerical complexity and 
computational cost and to develop a conceptual 
understanding of CBL growth, the horizontally averaged 
profiles of buoyancy, momentum, and TKE (Eq. 13) can 
be integrated over the depth of the CBL to form the 
integral budgets of those quantities.  In order to simplify 
the integration, the boundary layer structure is 
parameterized.  The simplest parameterization is known 
as the zero order model (ZOM), developed by Lilly 
(1968) and others following.  Figure 1 shows the ZOM 
profiles for buoyancy.  In the ZOM, the buoyancy is 
taken to be constant within the CBL and has a finite 
discontinuity at the CBL top, where it jumps to its free 
atmospheric value. Above the CBL, the buoyancy is a 
linear function of height.  Integrating the buoyancy 
balance equation to some arbitrary level iz z< , one can 
obtain the buoyancy flux, which varies linearly from a 
positive value at the surface to a negative value just 
below the interface at the CBL top (a fraction of the 
negative of the surface value), where it jumps back to 
zero.  Originally, the ZOM was only applied to situations 
in which the shear contribution of TKE in the CBL could 
be neglected, but later authors [Zeman and Tennekes 
(1977), Tennekes and Driedonks (1981), Driedonks 
(1982), Boers et al. (1984), Fairall (1984), Batchvarova 
and Gryning (1990, 1994), Fedorovich (1995), Pino et 
al. (2003) extended it to CBL types with shear 
contribution to the generation of TKE.  The momentum 
profiles in the ZOM are prescribed in a similar manner to 
the buoyancy profile, with a constant value in the mixed 
layer, a jump at the top of the CBL, and a linear rate of 
change in the free atmosphere.  Fedorovich (1995) 



derived the complete ZOM equations for the CBL with 
wind shear contributions to the TKE but did not propose 
solutions to the equations. 

For the shear-free case, analytic solutions to the 
entrainment equation are possible when certain 
assumptions are made regarding the profiles of TKE 
and its dissipation rate.  In particular, the Deardorff 
(1970) and Zilitinkevich and Deardorff (1974) scaling 
hypotheses are used, and the TKE and dissipation 
profiles in the CBL are assumed to be self-similar.  
Given such assumptions, the TKE and dissipation, when 
scaled by the convective velocity scale ( )=

1/ 3
* s iw B z , 

integrate to constants, and the system of equations 
describing CBL entrainment is closed.  Fedorovich et al. 
(2004) have compared ZOM solutions with LES of the 
shear-free CBL and found good agreement as long as 
the parameters of entrainment are retrieved from LES in 
a manner that is consistent with their definitions in the 
ZOM. 
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Figure 1. Profiles of buoyancy in the zero order model 
(ZOM) compared to the actual horizontally averaged 
profiles in the CBL. 

 
Similar scaling assumptions regarding the integrals of 
TKE and dissipation can be applied to the CBL with 
shear, except that the appropriate velocity scale may be 
different from the shear-free case.  In the ZOM, the 
shear generation of TKE within the CBL is zero because 
the momentum is assumed to be well-mixed there.  This 
means that shear only contributes to the generation of 
TKE at the CBL top or at the surface.  Most authors 
consider the surface shear and adjust the velocity scale 
upward by including the friction velocity *u . 

At the CBL top, the shear contribution is modeled in 
terms of the velocity jumps, and the assumption is made 
that a certain fraction of the shear-generated energy is 
available for entrainment, and the other portion is 
dissipated. 

The derivations of the entrainment equations are 
found in the papers listed above, and the equations are 
only listed in their final form here.  Some authors 
present their solutions in terms of the CBL growth rate, 

/idz dt , and others show the entrainment flux ratio, 
which is defined as the negative of the buoyancy flux of 
entrainment to the surface buoyancy flux ( − /i sB B ).  In 
terms of the latter quantity, the following general form is 
common to most of the equations: 
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where ∆u  and ∆v  are velocity jumps across the 
entrainment zone and ∆b  is the buoyancy jump. 

θ θ′= 0( / )i i
B g w  ( = −∆ /ibdz dt  in the ZOM) is the 

buoyancy flux of entrainment, ( )=
1/3

* s iw B z is the 

Deardorff (1970) convective velocity scale and FC , TC , 

and PC  are constants describing the relative 
contributions of the buoyancy generation, spin-up, and 
shear generation of TKE, respectively.  The parameter 

FC  represents the portion of buoyancy-generated TKE 
that is not dissipated before being used for entrainment, 
and PC  represents the portion of shear-generated TKE 
that is available for entrainment.  Finally, the adjusted 
velocity scale is = +3 3 3

* *mw w Au , where *u  is the friction 
velocity, except Zeman and Tennekes (1977) and 
Tennekes and Driedonks (1981) use = +2 2 2

* *mw w Au . 
One limitation of (13) is immediately clear: if the 

shear across the CBL top becomes sufficiently large, 
the denominator of the entrainment equation can go to 
zero, and the entrainment ratio will become infinite.  
While this result is expected if the surface buoyancy flux 
approaches zero, it is not clear from the expression that 
the right hand side will behave in such a fashion.  Some 
of this has to do with the limitations of the assumptions 
that are made, particularly with the spin-up term.  The 
spin-up of TKE is scaled only by the convective velocity 
scale, implying that the shear-generated TKE at the 
CBL top is not transported into the CBL where it is 
stored.  If the shear is included in the velocity scale, 
then the spin-up term in the denominator will become 
larger and compensate for a larger shear term. 

The entrainment parameterizations of Zeman and 
Tennekes (1977), Tennekes and Driedonks (1981), 
Boers et al. (1984), and Pino et al. (2003) follow (13) 
reasonably closely, except that Zeman and Tennekes 
(1977) were unable to include the entrainment zone 
shear term because they did not know what portion of 
the shear-generated TKE is available for entrainment.  
Table 1 describes the values of the constants that were 
used in the entrainment expressions. 
 



Table 1. Values of Constants in Entrainment Equations 

Author A  FC  TC  PC  
Tennekes 
(1973) 12.5 0.2 0 0 

Zeman and 
Tennekes 
(1977) 

4.6* −0.5 0.024 i

m

Nz
w

 3.55 0 

Tennekes and 
Driedonks 
(1981) 

4* −0.6 0.03 i

m

Nz
w

 4.3 0.7 

Driedonks 
(1982) 25 0.2 0 0 

Boers (1984) 23 0.32 0.75 1 
Batchvarova 
and Gryning 
(1990,1994) 

12.5 0.2 0 0 

Pino et al. 
(2003) 8 0.2 4 0.7 

 
Other studies [Tennekes (1973), Driedonks (1982), 
Batchvarova and Gryning (1990,1994)] consider only 
the surface shear or parameterize the total shear 
contribution.  In this case, (13) is reduced to 
− = 3 3

*/ /i s mB B w w .  Batchvarova and Gryning (1990, 
1994) use the formula 
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 The entrainment equation of Stull (1976a,b) 
partially follows the ZOM approach but adds a 
parameterization of the entrainment zone thickness over 
which the velocity jump occurs. Although his approach 
is somewhat inconsistent with ZOM methodology, the 
problems of the unboundedness of (13) are avoided.  
Stull’s entrainment equation is 
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where δ  is the entrainment zone thickness, mu  is the 
mixed layer velocity, and =1 0.1A , =2 0.05A , and 

=3 0.001A . 
More recently, Sorbjan (2004) developed a 

parameterization specifically for the heat flux at the 
sheared CBL top.  This parameterization takes into 
account the Richardson number of the entrainment zone 
and therefore requires a finite entrainment zone 
thickness.  In the ZOM, the entrainment zone 
Richardson number is zero because the entrainment 
zone depth is infinitesimally small while the velocity 
jump remains finite.  Thus, shear becomes infinitely 
large and although the buoyancy gradient is also large, 
if one assumes a linear variation of buoyancy and 

momentum across the entrainment zone and takes the 
limit as the entrainment zone depth goes to zero, one 
will find that the Richardson number tends to zero.  The 
Sorbjan parameterization is 
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with = 0.015Hc  and =2 1.5c .  The Richardson number 
is the interfacial Richardson number 

( )δ= ∆ ∆ + ∆2 2/Ri b u v , where the velocity and 

buoyancy jumps are interpreted as their changes across 
the full layer δ .  This approach is most consistent with 
the first order model (FOM) of entrainment (Betts 1974), 
in which the buoyancy profile is like the ZOM profile in 
the mixed layer and the free atmosphere, but the 
entrainment zone has a finite thickness δ , and the 
buoyancy and velocity profiles there are linear. 
 Other FOM models [Mahrt and Lenschow (1976), 
Kim (2001)] have been considered for this study, but the 
mathematical formulation of the entrainment equation is 
not much different from (13) other than being a bit more 
complex.  Additionally, the entrainment zone thickness 
is an additional dependent variable in the FOM 
equations that requires additional parameterizations or 
assumptions to close the problem and presents more 
opportunities for the developed equations to have 
undesirable mathematical consequences.  Fairall (1984) 
also developed a shear parameterization for CBL 
entrainment, but the expression was rather 
cumbersome to evaluate from LES data and did not 
provide additional insight beyond what was provided by 
the simpler, ZOM-based entrainment equations. 
 
4. EVALUATION METHODOLOGY 
 
The following cases of CBL with wind shears were 
studied with LES: 

1. No mean shear (NS case), which was the 
reference case. 

2. Height-constant geostrophic wind of the 20 m/s 
magnitude throughout the whole simulation 
domain (GC case). 

3. Geostrophic wind with the magnitude that linearly 
increased from zero at the surface to 20 m/s at 
the domain top (GS case). 

In the GC and GS cases, geostrophic wind had only the 
longitudinal (x) component ug, so the y component of the 
geostrophic wind, vg, was set equal to zero. For all 
simulated cases, the surface roughness length, 
geographic latitude, and reference temperature were 
prescribed to be 0.01 m, 40° N, and 300 K, respectively. 
 In the initial-flow configurations (see Fig. 2), virtual 
potential temperature θ changed vertically at a constant 
rate of 0.001, 0.003, or 0.010 K/m throughout the entire 
domain starting from the surface. The initial wind 
velocity in the domain was geostrophic (zero in the NS 
case), with the vertical velocity component set equal to 
zero.  The surface heat flux had values of 0.03, 0.10, or 



0.30 K m/s and was kept constant with time throughout 
the run. 
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Figure 2. Initial profiles of the virtual potential 
temperature θ and x component of the geostrophic wind 
velocity, ug, for the simulated CBL cases. 
 
The LES grid domain was 5.12×5.12×1.6 km with grid 
cells of 20 meters in all dimensions.  Considering all 
possible combinations of shear, stratification, and 
surface heat flux, a total of 24 LES runs were 
conducted.  The combinations with the strongest 
stratification (0.010 K/m) and weakest heat flux (0.03 
Km/s) were not conducted due to the excessive time 
necessary for these cases to run to completion.  The 
LES were allowed to continue until the CBL depth 
reached approximately 1000 meters, at which point it 
was possible for the entrainment zone to impinge upon 
the sponge layer, so the run was stopped. 
 Turbulence statistics were calculated every 100 
seconds. The averaging was carried out over the 
horizontal planes only in order to avoid uncertainties 
associated with complementary time averaging. The 

CBL depth iz  was determined from the minimum of 
kinematic heat flux θ 'w  (resolved + subgrid). 

The evaluation of the RANS-based NWP 
turbulence closures was carried out in a similar manner 
to Moeng and Wyngaard (1989) and Ayotte et al. 
(1996).  The LES code was reduced to a one-
dimensional column model, and the turbulence closure 
schemes described in Section 2 were used.  The CBL 
depth was determined in the same manner as in LES, 
and the CBL depth versus time determinations were 
compared with those of LES. 

The evaluation of the various schemes within the 
integral budget approach was done by retrieving the 
parameters sB , iz , ∆b , ∆u , and ∆v  from LES data 
and using them in the respective formulations (13), (14), 
or (15) with the constants indicated in Table 1.  
Unfortunately, the evaluation of the above parameters 
was not very straightforward.  The definitions of the 
parameters of entrainment were dependent on the 
author evaluating them, regardless of whether the 
evaluation was made based on atmospheric data or 
LES results.  For example, in the ZOM, the buoyancy 
jump across the entrainment zone can be evaluated in 
the strict sense of the ZOM, in which case the linear free 
atmospheric profile of buoyancy is extrapolated 
downward from the upper edge of the entrainment zone 
to the defined CBL depth iz .  However, many authors 
took the full change across the entire depth of the 
entrainment zone.  Unfortunately, in most cases, the 
actual value of the parameterized heat flux at the 
inversion is highly sensitive to the size of the jumps 
used.  Additionally, there is usually a difference between 
the actual entrainment heat flux, iB  (the minimum of 
heat flux in the entrainment zone), and the ZOM-
parameterized heat flux, ∆ /ibdz dt .  Some authors have 
tuned their parameterizations for the former, and others 
for the latter.  To the extent possible, this study tries to 
use the parameterizations in a manner consistent with 
the way they were originally evaluated by their 
respective authors. 

Because of the large number of comparisons 
performed, only the most important and representative 
results are shown in the following sections. 
 
5. RESULTS 
 
5.1 RANS-Based Closures in NWP 
 
 The cases with a heat flux of 0.03 Km/s and a free 
atmospheric stratification of 0.003 K/m are 
representative of the differences between the various 
numerical models of entrainment and LES.  With this 
particular combination of surface heat flux and free 
atmospheric stratification, the shear promotes a 
significant deepening of the CBL in the GS and GC 
cases, relative to the shear-free (NS) case. The CBL 
depth versus time for the ARPS e-l closure is compared 
with LES in Fig. 3.  The CBL depth for the NS case 
grows more slowly with the ARPS e-l model than with 



LES.  For the GC case, and particularly in the GS case, 
the relationship is reversed, and the e-l model predicts 
faster CBL growth than is seen in LES. 
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Figure 3. Comparison of the CBL depth ( iz ) versus 
time predictions of ARPS e-l closure versus LES 

 
Figure 4 shows the heat flux profiles in LES versus the 
ARPS e-l closure.  In the LES, the heat flux profiles are 
generally smoother than in the ARPS closure, and it is 
obvious that, in the cases with shear, the RANS-based 
entrainment heat flux is much larger than in LES. Figure 
5 shows the overall effect on the potential temperature 
profiles.  If a different definition of the CBL depth, such 
as the height of the maximum temperature gradient, 
were used, the results would still be the same. 
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Figure 4. Comparison of the heat flux profiles of ARPS 
e-l closure versus LES at t=10000s. 
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Figure 5. Comparison of the potential temperature 
profiles of ARPS e-l closure versus LES at t=10000s. 
 
The RANS-based closures predict much faster CBL 
growth compared to LES when shear is present.  Figure 
6 shows the TKE profiles.  Surprisingly, the TKE in the 
ARPS e-l closure is less than in LES, despite the 
greater entrainment of heat.  Looking at the profile for 
the GS case more carefully, it can be seen that the TKE 
at the top of the CBL is greater in the ARPS e-l closure 
than in LES.  For the GC case, the LES has greater 
energy, but the energy calculations in LES do not 
distinguish between truly turbulent motions associated 
with entrainment and wave-like motions that do not mix 
heat. 
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Figure 6. Comparison of the TKE profiles of ARPS e-l 
closure versus LES at t=10000s. 
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Figure 7. Comparison of the CBL depth iz  predictions 
with F&K e-l closure and LES. 
 
The F&K closure predictions of the CBL depth are 
compared with LES data in Fig. 7.  Basically, the results, 
in a relative sense, are similar to those in the ARPS 
case.  The CBL depths agree very closely with LES for 
the NS case, but in the GS and GC cases, the 
entrainment is remarkably faster than in LES. 
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Figure 8. Comparison of the heat flux profiles obtained 
with F&K e-l closure and LES at t=10000s. 
 
The heat flux profiles are shown in Fig. 8.  If the 
maximum temperature gradient height is used for the 
definition of the CBL depth, the results are very similar, 
as can be seen in Fig. 9.  In Fig. 10, the TKE is shown.  
Unlike the ARPS closure, the F&K closure shows 
greater TKE in the cases with shear when compared to 
LES, and the TKE in the NS case is very comparable to 

TKE from the LES. The TKE values in the interior of the 
CBL are actually rather similar to the LES predictions, 
but at the top of the CBL (where shear is fairly large), 
there is much more TKE predicted by F&K than by LES. 
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Figure 9. The potential temperature profiles from F&K 
e-l and LES at t=10000s. 
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Figure 10. The TKE profiles from F&K e-l and LES at 
t=10000s. 
 
Finally, the momentum profiles in ARPS, F&K, and LES 
are compared in Fig. 11.  Between the two e-l models, 
the momentum gradients from F&K more closely match 
the LES momentum gradients than do those from 
ARPS, but the values of momentum are greater in the 
F&K data for the GS case because of the enhanced 
entrainment of momentum.  The GC momentum from 
F&K is less than predicted by LES momentum for the 
CBL interior, perhaps due to the enhanced upward 



mixing of weaker momentum from the surface.  In 
ARPS, the TKE is much smaller in the lowest model grid 
level because of the greater dissipation there.  This 
causes less frictional slowing of the momentum, and 
momentum throughout most of the CBL in ARPS is 
greater than the LES momentum for the GC case. 
 

0 4 8 12 16 20
U (m/s)

0

400

800

1200

z 
(m

)

GS, LES
GC, LES
GS, ARPS
GC, ARPS
GS, F&K
GC, F&K

 
 
Figure 11. The momentum profiles from F&K e-l, ARPS, 
and LES at t=10000s. 
 
The primary conclusion regarding performance of two 
considered e-l closures is that for cases with shear, they 
predict faster entrainment than LES does.  This 
overestimation is not as large with ARPS as it is with 
F&K, but the ARPS-predicted CBL growth in the NS 
case is also slower than in LES.  Another common 
feature of the two closures is the larger relative 
difference in CBL entrainment between shear-free and 
sheared CBL cases than is predicted by LES.  One 
more disadvantage of e-l closures, earlier noted in 
Moeng and Wyngaard (1989), is their inability to directly 
account for counter-gradient turbulent flux in the upper 
portion of the CBL. 
 
5.2 Integral Budget-Based Closure 
 
 The results of the integral budget methods are 
grouped according to the type of method.  The 
parameterizations of Tennekes (1973), Driedonks 
(1982), and Batchvarova and Gryning (1990, 1994) take 
into account only the surface shear through their friction 
velocity terms and are presented together as Group I.  
The parameterizations of Zeman and Tennekes (1977), 
Tennekes and Driedonks (1981), Boers et al. (1984), 
and Pino et al. (2003) take into account more than just 
the surface shear.  They also include either the spin-up 
term, velocity jump across the entrainment zone 
(although some may use the full jumps rather than the 
ZOM jumps), or both and are thus assigned to Group II.  
Finally, the parameterizations of Stull (1976a,b) and 

Sorbjan (2004), which differ somewhat from the typical 
ZOM methodology, constitute Group III. 
 Figure 12 shows results obtained with the 
parameterizations of Group I for the GS case.  The 
parameters of entrainment were retrieved from LES 
data.  The black dots denote the entrainment flux ratio 
defined from the ZOM parameterization for the 
entrainment zone heat flux, = −∆ /i iB bdz dt , and the 
blue dots denote the entrainment flux ratio defined from 
the actual minimum of buoyancy flux in the LES 
entrainment zone.  Since the parameterizations in Fig. 
12 take into account only the surface shear, which is 
initially zero, they underestimate the entrainment flux 
ratio in the GS case and predict values consistent with 
commonly accepted shear-free value of about 0.2. 
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Figure 12. Entrainment flux ratio predictions of Group I 
closures compared with LES for the GS case with 

θ =/ 0.003d dz  K/m and = 0.03sQ K m/s. 
 
Figure 13 shows results for parameterizations from 
Group II.  The entrainment parameterization of Zeman 
and Tennekes (1977) does not take entrainment zone 
shear into account and fortuitously performs better than 
the others when compared to LES data.  Among those 
that do take the entrainment zone shear into account, 
the parameterization of Pino et al. (2003) performs the 
best, but all suffer from problems with the denominator 
going to zero, when the entrainment rate becomes 
unbounded. 
 Figure 14 shows the comparisons with the Group III 
parameterizations.  Since these parameterizations do 
not include negative-sign shear terms in the 
denominator, the parameterized entrainment flux ratio 
does not become unbounded.  The Stull (1976a,b) 
parameterization predicts an entrainment flux ratio that 
climbs steadily with time, while LES data show a fairly 



constant value.  The Sorbjan (2004) entrainment flux 
ratio also increases with time. 
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Figure 13. Entrainment flux ratio predictions by Group II 
closures compared to LES for the GS case with 

θ =/ 0.003d dz  K/m and = 0.03sQ K m/s. 
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Figure 14. Entrainment flux ratio predictions by 
Group III closures compared to LES for the GS case 
with θ =/ 0.003d dz  K/m and = 0.03sQ K m/s. 

Figure 15 shows the entrainment flux ratios by the 
Group I parameterizations for the GC case. All methods 
predict higher entrainment flux ratios than LES.  The 
predicted ratios decrease with time, and the LES data 
show this decrease to some extent as well. 
 The initial value of surface shear is very large, and 
so the shear-generated TKE at the surface should be 
very large as well.  As friction decreases the momentum 
in the CBL, the surface shear-generated TKE also 
decreases, resulting in a decrease in the predicted 
entrainment flux ratio. 
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Figure 15. Entrainment flux ratio predictions of Group I 
closures compared to LES for the GC case with 

θ =/ 0.003d dz  K/m and = 0.03sQ K m/s. 
 
Figure 16 shows entrainment predictions for the GC 
case by the Group II parameterizations.  Again, all of 
them overpredict the entrainment flux ratio, but the Pino 
(2003) parameterization performs the best.  The 
denominator goes to zero in these expressions for the 
GC case just like it does for the GS case. 
 Figure 17 shows performance of the Group III 
parameterizations for the GC case.  These perform the 
best of all the groups of parameterizations.  The 
parameterization of Stull (1976a,b), which takes both 
surface and elevated shears into account, performs 
better than the Sorbjan (2004) parameterization, which 
only uses entrainment zone shear.  This does not 
necessarily mean that the surface shear is equally 
important to the entrainment zone shear. It merely 
means that the Stull parameterization is better tuned for 
this particular case.  In fact, LES results indicate that it 
is primarily the entrainment zone shear that drives the 
enhancement of entrainment relative to the shear-free 
cases.  Even the GC cases, which start without 



entrainment zone shear, eventually develop similar 
shear at the CBL top when compared to the GS cases. 
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Figure 16. Entrainment flux ratio predictions of Group II 
closures compared to LES for the GC case with 
dθ/dz=0.003 K/m and surface heat flux of 0.03 K m/s. 
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Figure 17. Entrainment flux ratio predictions of Group III 
closures compared to LES for the GC case with 
dθ/dz=0.003 K/m and surface heat flux of 0.03 K m/s. 
 
In order to illustrate a situation, in which the 
parameterizations perform reasonably well, we show in 
Fig. 18 the Group II parameterizations for the GS case 

with a surface kinematic heat flux of 0.10 K m/s and a 
free atmospheric stratification of 0.010 K/m. 
 All parameterizations perform reasonably well, but 
the entrainment flux ratio is close to the shear-free value 
of 0.2 anyway.  Of those methods that take entrainment 
zone shear into account, the Pino et al. (2003) 
parameterization is closest to the LES entrainment flux 
ratio.  Overall, the Zeman and Tennekes (1977) 
parameterization is the closest to the LES results, but it 
does not specifically take the entrainment zone shear 
into account. 
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Figure 18. Entrainment flux ratio predictions by the 
Group II parameterizations compared to LES for the GS 
case with dθ/dz=0.010 K/m and surface heat flux of 0.10 
K m/s. 
 
5. SUMMARY AND CONCLUSIONS 
 
 The e-l closures of Xue et al. (2001) and Fielder 
and Kong (2003) both predict a greater difference in 
entrainment between shear-free CBLs and sheared 
CBLs, with entrainment predicted for sheared CBLs 
being too large.  At the same time, the F&K closure 
predicts CBL growth very close to the LES predictions 
for the NS case. The more rapid entrainment in cases 
with shear seems to occur regardless of the TKE values 
in the parameterized CBL.  The ARPS scheme 
produces less TKE than LES but still predicts too fast 
entrainment when shear is present.  The F&K scheme 
generally produces TKE values that are comparable to 
those of LES, but the TKE in the entrainment zone, 
where significant shear is present, is significantly 
greater than the LES-predicted TKE.  It is possible that 
the shear production of TKE in such schemes is 
overestimated, perhaps because the appropriate length 
scales for shear-generated turbulence in the CBL are 
different from the length scales for buoyancy-generated 
turbulence.  It is possible that the formulation of the 



master length scale l for CBL turbulence needs to be 
revised to account for the effects of shear. 
 The analysis in the present paper is somewhat 
limited by the fact that the initial momentum profiles do 
not necessarily reflect real atmospheric profiles.  In 
particular, the surface winds in the GC case would 
probably never be equal to their geostrophic value, and 
so any NWP model initialization would have 
subgeostrophic winds at the surface and therefore 
weaker wind shears there.  Likewise, the GS case has 
very large geostrophic shear, probably three or four 
times greater than its typical atmospheric value.  
Nevertheless, similar magnitudes of total shear 
(between 10 meters above ground level and a kilometer 
or so above ground level) are not unheard of.  In this 
way, the cases with strong shear serve as a critical test 
of how an e-l scheme in NWP might perform with 
respect to the development of the CBL.  It is particularly 
important for NWP and air quality model schemes to 
correctly predict boundary layer depth, because this 
affects the concentration of moisture in the lower 
atmosphere as well as the concentration of air 
pollutants. 
 The tests of the integral budget-based entrainment 
schemes suggest that they overestimate entrainment in 
situations when strong shear is present.  Again, it must 
be stated that the shear in the LES cases is rather 
strong, but the cases were designed in this manner so 
that the relative effects of shear could be more easily 
seen.  Adhering to the strict mathematical form of the 
ZOM provides entrainment equations that contain the 
entrainment zone shear as a negative sign term in the 
denominator.  This has the unfortunate result of causing 
the denominator to drop to zero and the entrainment flux 
ratio to become unbounded well before the surface heat 
flux goes to zero.  Entrainment equations by Stull 
(1976a,b) and Sorbjan (2004), which deviate from the 
traditional ZOM methodology in this respect, avoid this 
problem and therefore produce more realistic results for 
the strong shear conditions.  The success of these two 
parameterizations suggests the importance of 
accounting for the finiteness of the entrainment zone 
thickness in any entrainment equation for sheared CBL.  
Given that Kelvin-Helmholtz instabilities appear to be an 
inherent feature of convective entrainment in the 
presence of wind shears, as our and other LES show 
(see, e.g., Kim et al. 2003), any Ri-limited entrainment 
equation would seem to be most suited to model the 
growth dynamics of sheared CBL. 
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