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1. INTRODUCTION 
The classification of time-varying multivariate 

regional-scale wind fields at a specific location can 
assist event planning as well as consequence and 
risk analysis.  Further, wind field classification 
involves data transformation and inference 
techniques that effectively characterize stochastic 
wind field variation.  Such a classification scheme is 
potentially useful for addressing overall 
atmospheric transport uncertainty and 
meteorological parameter sensitivity issues.  

Different methods to classify wind fields over a 
location include the principal component analysis of 
wind data (e.g., Hardy and Walton, 1978) and the 
use of cluster analysis for wind data (e.g., Green et 
al., 1992; Kaufmann and Weber, 1996).  The goal 
of this study is to use a clustering method to 
classify the winds of a gridded data set, i.e, from 
meteorological simulations generated by a forecast 
model.  

2. PREDICTED WIND FIELDS 
The predicted regional scale wind fields were 

generated using the Coupled Ocean Atmosphere 
Prediction System (COAMPS) model (Hodur, 1997) 
on three-hourly intervals for several altitude levels.  
We employed the ADAPT atmospheric data 
assimilation model (Sugiyama and Chan, 1998) on 
the COAMPS output to provide mass-consistent 
three-dimensional time-varying wind fields for the 
NARAC Langrangian particle tracking code, LODI 
(Nasstrom et al., 2000).  The LODI code was used 
for all dispersion calculations.  

Wind fields for the particular regional location 
of concern vary on both an hourly basis and on a 
seasonal basis (see Figure 1 and Figure 2).  The 
winds tend to be faster and more westerly in winter, 
due to the dominance of synoptic forcing, and tend 
to be slower and more variable in the summer.  

Dispersion simulations using these wind fields 
were conducted for event planning and 
consequence assessment purposes.  The 
ensemble of dispersion runs are shown below for 

an instantaneous January release at 3pm (Figure 3) 
and for an identical July release at 3pm (Figure 4).  
While obvious patterns can be discerned, a 
quantitative method for classifying the wind 
magnitude, direction and duration is desirable. 

3. WIND CLASSIFICATION METHODOLOGY 
 In cluster analysis the objective is to divide a 

set of observations (here the collection of gridded 
wind field data at various times of the year) into 
groups or clusters in such a way that most pairs of 
observations which are placed in the same cluster 
are more similar to each other than are pairs of 
observations which are placed in two different 
clusters. Because components are measured in the 
same units (m/s) it is reasonable to use Euclidean 
distance as a measure of similarity. The distance 
between the pair of observations corresponding to 
times t and τ is therefore 

 dtτ = ujt − u jτ( )2
+ v jt − v jτ( )2[ ]j=1
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where N denotes the number of spatial positions in 
the grid.  In equation (1) we are consider the 2-
dimensional hindcast wind velocity vector (u, v) 
parallel to the surface of the earth. The restriction to 
two velocity dimensions is motivated by 
computational convenience and is unnecessary. 

We use a K-means clustering method which 
fixes the number of clusters, K, and divides the 
observations into K clusters in such a way that the 
total sum of squared Euclidean distances between 
observations and their respective cluster centroids 
is minimized. The minimization for our dataset was 
performed with Matlab software. There is no 
consensus in the statistical community on a method 
to select an appropriate value for the number of 
clusters, K. We have used the silhouette measure 
of Kaufman and Rousseeuw (1990) which is 
implemented in Matlab. 

The relative frequency of occurrence of a 
given cluster can be estimated by the proportion of 
data points (times of the year) assigned to this 
cluster. Moreover, the wind field variation within the 
cluster can be characterized by parameter 
estimation over the associated times. For example,  



 

Figure 1.  Time-varying wind-field on a 
January afternoon at 406m AGL (3pm, 4pm, 
5pm). Domain shown is ~200km on a side; 
center magenta wind vector is ~ 5 m/sec. 

 
 

 
 
 

 

Figure 2.  Time-varying wind-field on a July 
afternoon at 406m AGL (3pm, 4pm, 5pm). 
Domain shown is ~200km on a side; center 
magenta wind vector represents ~2 m/sec. 

 
 

 

Figure 3.  Ensemble of dispersion results 
for 30 days in January (45km x 45km 
domain shown, yellow box marks release 
point).  Illustrated is a 30 day ensemble of 
the deposition of 100-200 micron particles 
instantaneously released aloft from the 
center location at 3pm. 

 

 

Figure 4.  Ensemble of dispersion results 
for 30 days in July (45km x 45km domain 
shown, yellow box marks release point).  
Illustrated is a 30 day ensemble of the 
deposition of 100-200 micron particles 
instantaneously released aloft from the 
center location at 3pm. 



the 2-dimensional velocity vector  at a 

particular location j can be modeled for cluster 
number c (1 ≤ c ≤ K) by a bivariate distribution with 
mean, standard deviation, and correlation 
parameters , which are estimated 

by their sample counterparts; for example,  

U j ,V j( )(c )

µu,µv,σ u,σ v,ρuv( j

(c ))

  

) µ u
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where Tc is the set of points (times) assigned to 
cluster c, and mc is the size of this set, i.e., the 
number of points in the cluster. From this we may 
obtain, by assuming bivariate normality, estimated 
probability contours at levels of interest, say 50%, 
75%, and 90%. The level γ probability contour is an 
ellipse within which an expected percentage, γ, of 
values  will fall. The location, orientation, 

and shape of the ellipse depend on the five 
parameter values.  

U j ,V j( )(c )

The clustering method used is graphically 
described in Figure 5 and Figure 6 for a simple 
example with 9 spatial readings at 6 times (t1 
through t6). As an example, if three clusters are 
chosen, i.e., a certain maximum distance d is 
allowed for dissimilarity, then the six time readings 
reduce to 3 clusters each having a corresponding 
average wind components and measures of 
variance and correlation, . µu,µv,σ u,σ v,ρuv( ) j

(c )
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Figure 5.  Example of clustering:  6 time 
sets of 9 spatial observations. 

4. CLASSIFICATION OF 2003 WINDS 
For this study we enjoyed access to a large 

set of hindcast wind field data and an ensemble of 
dispersion simulations over a specific region for 
every 3 hours over the entire year of 2003. Using K-
means we partition this entire year’s worth of noon 
and midnight data into distinct clusters which are 
then characterized by probability distributions that 
describe spatially varying wind speed and direction.  
For the presented analysis we chose to cluster at a 
single altitude of 187m to capture a release aloft, 
sacrificing any possibility to capture vertical wind 
shear in the wind classification. This was deemed 
acceptable as the location of concern experiences 
little wind shear below the planetary boundary layer 
depth (~400m at midnight, ~1200m at noon).  The 
spatial observations of wind were made for every 

36km x 36km over a 220km x 220km domain, i.e., 
for 49 spatial observations at every time reading. 

The u-v data (one point for each reading) for 
2003 are plotted for the center “release” location of 
the domain in Figure 7.  Note that there are another 
48 of these u-v plots diagrams to account for all of 
the 49 spatial locations involved. The 98-
dimensional data were clustered using the K-means 
method described above with best clustering 
according to silhouette criteria occurring for 5 wind 
classes.  The projected clustering for the center 
location is illustrated in Figure 7:  a low-wind cluster 
(red-center), and winds from four directions 
(orange-SE; dark blue-SW; light blue-NW; green-
NE).  As discussed above, each of the 5 classes 
also has associated with it the characterizing 
parameters (µu, µv, σu, σv, ρuv) for any given 
location. Normal distribution probability contours 
can in turn be generated for each wind class (50% 
contours, see Figure 7; 75% contours, see Figure 
8) that may be employed in sensitivity and 
uncertainty analysis. 
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Figure 6.  Example of clustering:  3 clusters 
group as t1, t2 & t3; t4 & t5; and t6.   

The wind cluster frequency can be determined 
on a diurnal basis and on a longer term basis.  
While clustering was done for the entire year, it is 
instructive to demonstrate how the clustering 
scheme separates the frequency of wind classes in 
distal months January and July (Figure 9).  January 
is dominated by westerly winds occurring about 
70% of the time (northwesterly winds are 
particularly dominant) and with low winds occurring 
about 25% of the time.  Westerly winds are 
expected as the synoptic patterns are primarily 
northwesterly in nature and are very dominant in 
the winter for this specific location.  July is 
dominated by low winds occurring nearly 50% of 
the time and by southerly winds occurring nearly 
40% of the time. This indicates a lack of synoptic 
forcing during the summer month and the 
dominance of local wind patterns in the region. 



 

Figure 7.  The 2003 u-v wind data for 12pm 
and 12am wind forecasts at 187m altitude 
for the center “release” location. Note 50th 
percentile contours (five clusters are best). 

 

Figure 8. Same data (u and v) as in Figure 7 
but with 75th percentile contours. 
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Figure 9.  Wind cluster frequency durin
January and July. 

Comparison of the frequency of occurren
(Figure 9) and the ensemble of dispersi
simulations for 30 days in January (Figure 3) a
for 30 days in July (Figure 4) illustrate t

usefulness of the five wind clusters.  The 
dominance of westerlies is evident in both 
dispersion runs and the clustering for January; the 
dominance of low winds and southerlies is evident 
in both dispersion runs and the clustering for July.  
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5. CONCLUSIONS 
The K-means clustering method is effective in 

using a heterogeneous high-dimensional 
multivariate data set to create a manageable set of 
relatively homogeneous classes which can be 
characterized stochastically and employed in event 
planning and consequence assessments as well as 
in sensitivity/uncertainty analyses.  The single 
altitude clustering of the 2003 noon and midnight 
gridded wind fields results in five identifiable wind 
classes that generally agree with an ensemble of 
dispersion simulations.  While this example does 
not account for multiple altitudes and does not 
account for a time-series relationship for the 
change in wind classes, the study demonstrates the 
method’s utility for classifying events of short 
duration in environments with little vertical wind-
shear.  The method can be modified to account for 
additional altitudes, a vertical velocity component, 
and a time history of wind class change. 
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