The gross primary productivity (GPP), and ecosystem respiration (R_{eco}) of carbon dioxide was examined in irrigated maize and irrigated soybean fields grown in eastern Nebraska. In both fields, seasonal changes in GPP (during clear skies) closely followed a hyperbolic relationship with green LAI during the vegetative and early reproductive growth stages. The nighttime R_{eco} displayed an exponential relationship with air temperature with Q_{10} between 1.5 and 2.0 for a given range of green LAI. For constant air temperatures during the season, the nighttime R_{eco} also showed a strong influence of the green LAI for both crops. The GPP of the maize ecosystem, integrated over the growing season, was substantially larger (1715 g C m$^{-2}$) as compared to that of the soybean canopy (980 g C m$^{-2}$) even though peak green LAI was comparable. The seasonally integrated ecosystem respiration however, was more comparable (about 1120 and 855 g C m$^{-2}$ in the maize and soybean, respectively).

* Corresponding author address: Shashi Verma, 236 L.W. Chase Hall, School of Natural Resource Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0728 email: sverma1@unl.edu