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1 INTRODUCTION

The U.S. Navy operational meteorologist is often required
to assess and forecast cloud ceiling conditions at remote
locations where there are no direct observations available.
In these situations, generating an immediate diagnosis of
cloud ceiling would enhance the support these meteorolo-
gists provide to the tactical decision-making process.

Neither numerical model output nor satellite imagery
can reliably provide the cloud ceiling height at a specific lo-
cation. Algorithms such as the one presented in Stoelinga
and Warner (1999) (referred to hereafter as SW) are ap-
plied to NWP model output in order to extract cloud ceiling
fields from numerical model fields. SW is based on empir-
ical and theoretical relationships between hydrometer at-
tributes and light extinction. As noted in that article, SW
ceilings were consistently higher than observed. Addition-
ally, satellite data techniques have been developed and
applied with limited success. Ellrod (2002) used a surface
temperature and infrared cloud top temperature difference
to estimate low cloud ceiling heights at night.

In general, the modeling of weather phenomena has
been theory-driven: parameters are determined by equa-
tions developed from physical laws and subsequently ver-
ified by data. However, in some highly complex situations,
the physical laws governing these phenomena are either
unknown, too complicated to represent, or not fully un-
derstood. For example, while a system of physical equa-
tions allows for the modeling of temperature and winds,
phenomena such as cloud processes are more complex
and their relevant parameters must be approximated. In
these circumstances, the conceptual modeling can be
data-driven. That is, through proper analysis, data rela-
tionships representing the physics implicit in the data are
empirically discovered.

Supervised machine learning techniques are used to
discover patterns in data and to develop associated classi-
fication and parameter estimation algorithms. These data
mining methods, used in a Knowledge Discovery from
Databases (KDD) procedure, are applied to the cloud ceil-
ing height assessment problem. Within the KDD method-
ology, raw data are collected, processed, and stored in
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a database. Data mining tools are then applied to the
database records to uncover the patterns and relation-
ships that represent physical laws implicit in the data.
This research attempts to find relationships in satellite and
NWP data that can provide accurate estimates of cloud
ceiling height.

COAMPSTM (Coupled Ocean/Atmosphere Mesoscale
Prediction System) output, GOES-10 data, and ground ob-
servations (METAR) are established within a unique me-
teorological research environment that allows for the au-
tomated collection, processing, and storage of meteoro-
logical data records. Parameter values from the disparate
data sources are extracted with location and time mark-
ers and these values are combined (“fused”) to form a
single data record with elements that are coincident in
space and time. Hourly data records are included in a
single database optimized for data mining. In addition to
the automated routines to populate the database, this re-
search environment also includes web-based monitoring
tools and 2D images of satellite and NWP data that can be
accessed in near real-time. The monitoring tools provide
supplemental information related to individual NWP model
runs, missing data (from any source), and database statis-
tics. This unique KDD environment has been introduced
in Bankert et al. (2001).

Parameter values for each data type are collected for 18
METAR (Aviation Routine Weather Report) station loca-
tions in California. Cloud ceiling observations are parsed
from METAR (mostly automated) reports for these se-
lected stations and stored in the database. They repre-
sent ground truth and serve as the dependent variable in
the subsequent search for patterns in the data which relate
GOES-10 and COAMPSTM variables to locally observed
cloud ceiling height.

2 DATA DESCRIPTION

GOES-10 and COAMPSTM each provide a unique type of
data. Satellite imagery provides a view “from above” in
the form of actual observed radiances in various spectral
channels. A numerical model provides a large number of
calculated variables at multiple levels in an atmospheric
column at any particular model grid point. These data
sources provide coincident (temporal and spatial) data that



can be explored individually (NWP-only or satellite-only) or
in combination. COAMPSTM output parameters and coinci-
dent GOES-10 parameters are computed and extracted at
18 METAR observation sites (listed in Table 1). Automated
data collection routines allowed for data to be collected
hourly over a 2.5 year period (July 12, 2000 - November
29, 2002).

Table 1: The 18 METAR stations (station identifiers in
parentheses) in California used in this study. The number
of observation records in the database for each location is
also indicated.

Location Records
Napa (KAPC) 26830
Bakersfield (KBFL) 24926
Camarillo (KCMA) 26472
Los Angeles (KLAX) 26006
Lompoc (KLPC) 62846
Modesto (KMOD) 25139
Monterey (KMRY) 29011
Paso Robles (KPRB) 25306
San Diego (KSAN) 26219
Santa Barbara (KSBA) 26329
San Luis Obispo (KSBP) 27250
San Francisco KSFO 24802
San Jose (KSJC) 23760
Santa Maria (KSMX) 29597
Salinas (KSNS) 27425
Santa Rosa (KSTS) 29890
Van Nuys (KVNY) 24635
Lancaster (KWJF) 27724

2.1 COAMPSTM Data

COAMPSTM is a non-hydrostatic, multiply nested,
mesoscale NWP model. It is run over the U.S. West Coast
and configured with three horizontal nested grids - 81, 27,
and 9 km resolution (Figure 1). There are 33 vertical levels
for all grids with the top located at 32.1 km. Grid points
are strongly compressed near the surface to resolve the
shallow boundary layer. COAMPSTM is run for a 12-hour
forecast cycle for this domain configuration at 00 UTC
and 12 UTC each day. The Navy Operational Global
Atmospheric Prediction System (NOGAPS) provides
the time-dependent boundary conditions for the 81 km
domain. The model is described by Hodur (1997), Hodur
et al. (2002), and Chen (2003). COAMPSTM features a full
suite of physical parameterizations, including the Mellor
and Yamada (1982) level 2.5 turbulence parameteriza-
tion, radiation (Harshvardhan et al., 1987), and cloud
microphysics (Rutledge and Hobbs, 1983) schemes.

The closest land grid point (within the 9 km domain)
to each of the selected METAR stations is determined.
COAMPSTM output values at those grid points for each
hour are extracted and written to the database. Table 2 is

Figure 1: COAMPSTM triply-nested domains for the U.S.
West Coast with horizontal grid resolutions of 81, 27, and
9 km for the outermost, middle, and innermost grid, re-
spectively.

a list of the COAMPSTM parameters utilized for the present
study.

COAMPSTM parameters were selected based on a priori
assumptions about which parameters might have the most
influence on cloud ceiling height. Most of the descriptions
in Table 2 are self-explanatory. However, some require ad-
ditional attention: �

� ,
�

� , � � are the friction scale velocity,
temperature, and moisture from the Monin-Ohbukhov sim-
ilarity treatment of the surface layer; the “10 m, sfc temper-
ature (mixing ratio) difference” is the difference in degrees
(gm/Kg) between the value at 10 m and the value at the
surface; the cloud parameters, “Cloud base height (qc)”
and “Cloud top height (qc)”, are determined from exami-
nation of the prognostic cloud liquid water and cloud ice
mixing ratio field while those followed by “(RH)” are based
on relative humidity; LCL is the lifting condensation level
and CCL is the convective condensation level; z/L is the
height of the surface layer divided by the Monin-Ohbukhov
length scale (in COAMPSTM, the height of the lowest model
grid point is used for the depth of the surface layer as is the
common practice in mesoscale models); and the cloud/no
cloud determination is based on the existence of cloud liq-
uid water or cloud ice in the atmospheric column above the
point of interest.

While COAMPSTM cannot forecast cloud ceiling height
with sufficient reliability and accuracy to be of operational



use, three dervied COAMPSTM parameters represent the
cloud ceiling height at each grid point. One of these ceil-
ing height estimations, “Cloud base height (qc)”, is based
on cloud water and ice. A search is made in a vertical col-
umn for the lowest altitude at which cloud liquid water mix-
ing ratio or the cloud ice mixing ratio exceeds a threshold
of 1.0e-06. A second COAMPSTM ceiling height parame-
ter is cloud base height (RH). The method for computing
this height is similar to cloud base height (qc) except that
a search is made for the lowest height level at which the
relative humidity is greater than 95%. Ceiling height (SW)
first uses the mixing ratios for cloud liquid water, cloud ice,
snow, and rain water to compute concentrations for each
species. The extinction coefficients are then computed
and integrated upward to the lowest altitude at which a
light beam from the surface decreases to 0.02 times the
original intensity.

2.2 GOES-10 Data

Hourly GOES-10 pixel data are extracted and written to the
database. This data consists of all sensor channel data at
a given pixel whose center (over land) is closest to the
location of each of the METAR stations. The visible chan-
nel value is corrected for the solar zenith angle. A cloud
optical depth algorithm (Wetzel and Stowe, 1999) is ap-
plied to the GOES-10 data (daytime only) and a low cloud
product (Lee et al., 1997) is derived by computing the dif-
ference between the shortwave and longwave infrared (IR)
channels. In addition, the difference in the two longwave
IR channels is computed. Tables 3 and 4 summarize this
information and include resolution and coverage informa-
tion.

2.3 METAR Data

METAR reports were collected in near-real time each hour
from the Fleet Numerical Meteorological and Oceano-
graphic Center (FNMOC) data server. Observed cloud
ceiling height is one of the sensible weather elements
parsed from the hourly METAR reports for the 18 selected
stations. The map in Figure 2 is marked with the locations
and names of those selected stations. These METAR sta-
tions were chosen due to their coastal nature (for most sta-
tions), the availability of satellite data over their location,
and the reliability and robustness of the METAR reports.
The ceiling height values represent the observer ground
truth and serve as the dependent variable in the regres-
sion relating GOES-10 and/or COAMPSTM variables to lo-
cal cloud ceiling height. The observed cloud ceiling height
is defined as the lowest level that has at least broken sky
conditions (equal to or greater than 6/8 cloud coverage).

Figure 2: Inner (9km) grid METAR station names and
locations.

3 DATA MINING PROCEDURE

To collect, visualize, interpret, and exploit the vast amount
of digital data available in the environmental sciences, re-
searchers have turned to Artificial Intelligence (AI) meth-
ods, and specifically, data mining (Hand et al., 2001). Data
mining is a discipline born of machine learning and statis-
tics, enhanced by large database concerns, pattern recog-
nition, knowledge representation, and other areas of com-
puter science and AI. In contrast to standard statistical ap-
proaches, data mining methods in the KDD tool chest typ-
ically relax requirements of sample size and pre-specified
model hypotheses. They are driven by the data and do
not require the correct preselection of hypothesis. Statisti-
cal methods generally hypothesize the form of the model,
and then use data to confirm the hypothesis. Furthermore,
data mining methods are designed to be able to handle
larger data sets (millions of records, and hundreds of vari-
ables). As a tool for scientific data analysis, data mining
utilizes induction to determine empirical models from the
observed data. This is in contrast to traditional methods
of analysis, where a hypothesis is made based on under-
standing of physical laws, and data is used to confirm or
refute the hypothesis.

In this study, the principle analysis tools for data min-
ing are the supervised inductive learning tools C5.0 and
Cubist (Quinlan, 1993; Rulequest Research, 1997-2004).
These tools were selected because of their ease of use
and recognized robustness.

C5.0 is a data mining algorithm used for producing clas-
sification models in the form of decision trees or if-then
rules. The software is designed to explore hundreds of
thousands of database records with hundreds of numeric
fields. As these classification models are expressed as de-



Table 2: COAMPSTM variables used in the data mining process.

1000mb, 850mb thickness Ground temperature
10m dewpoint Ground wetness
10m latent heat flux LCL
10m potential temperature Max TKE in PBL
10m relative humidity Max mixing ratio in PBL
10m sensible heat flux Max vert. velocity in PBL
10m temperature Net radiation
10m u-wind PBL depth
10m v-wind Precipitable water
10m, 1500m temp diff Sea level pressure
10m, sfc mixing ratio diff Surface albedo
10m, sfc temperature diff Surface mixing ratio
Bulk Richardson number Surface roughness
CCL Surface wind stress
Ceiling height (SW) Topography height
Cloud base height (RH) Total downward radiation
Cloud base height (qc) Total heat flux
Cloud coverage z/L
Cloud top (qc) temperature � �

Cloud top height (qc)
�

�

Cloud/No Cloud �
�

Table 3: GOES-10 Sensor channel information as captured for the database.

Channels
Central
Wavelength

Resolution Coverage

1. Visible .65 � m 1 km 30 Minutes
2. Near IR 3.9 � m 4 km
3. IR (Water Vapor) 6.7 � m 8 km
4. IR (Thermal) 11.0 � m 4 km
5. IR (Thermal) 12.0 � m 4 km

cision trees or rules, they are easier to interpret than other
“black-box” data mining tools such as neural networks.

In this work, C5.0 is used to generate two types of clas-
sifiers. The first classifier classifies Event records into ceil-
ing and no-ceiling categories. The second classifies ceil-
ing records into high-ceiling and low-ceiling categories.

The Cubist algorithm produces rule-based predictive
models for numerical prediction (also known as regres-
sion). Each model is expressed as a set of rules. Each rule
applies to only a small part of the input space, and has a
set of preliminary conditions and an associated local mul-
tivariate linear model. If a rule’s conditions are satisfied,
the associated model is used to calculate the predicted
value. This approach works well in high-dimension prob-
lems, such as the one addressed in this work, as only a
small number of variables may be required for a particular
rule and model. As a result, the rule set is more easily in-

terpreted than a standard regression equation on all input
variables, or a neural network.

3.1 Experiment Methodology

Through a KDD process, a 3-step method was developed
for generating cloud ceiling classifiers and ceiling height
estimators:

Step 1 : Create a Cloud Ceiling / No Cloud Ceiling classi-
fier (using C5.0 with all training data).

Step 2 : Create a Low Cloud Ceiling / High Cloud Ceil-
ing classifier (using C5.0 with training data consisting
only of cases where a cloud ceiling is present).

Step 3 : Create a Low Cloud Ceiling height estimator (us-
ing Cubist with training data consisting only of cases
where a low cloud ceiling is present).



Table 4: GOES-10 product information.

Product Coverage
Sun angle corrected visible channel 30 Minutes
Cloud Optical Depth 30 Minutes
Low Cloud Product 30 Minutes
Longwave IR Difference 30 Minutes

The resulting system is executed analogously. If the re-
sult of Step 1 classification for a given data point is “Cloud
Ceiling,” then the Step 2 classifier is executed for that point.
The Step 3 estimator is executed if the result of the Step 2
classification is “Low Cloud Ceiling.”

The “No Cloud Ceiling” class in the first step also in-
cludes data records for which the METAR ceiling is above
12,000 ft (3657.6 m). Most METAR reporting stations are
automated and observation instruments at such stations
cannot detect clouds above that altitude. Therefore, if the
lowest observed ceiling is above this limit, it is indistin-
guishable from a “No Cloud Ceiling” condition. As a result,
all observed ceilings greater than 3657.6 m are classified
as “No Cloud Ceiling.” For Step 2, the threshold to sepa-
rate low and high ceilings is 1000 m.

The basic classifier/estimator algorithm development
was performed using the following procedures:

� Export a set of Event records data from the database.

� Randomly split data into equal-sized training and test-
ing data sets

� Perform C5.0 data mining for Step 1 on training data,
and test resultant algorithm on testing data.

� Perform C5.0 data mining for Step 2 on “Ceiling”
cases only in the training data, and test the resultant
algorithm on “Ceiling” cases from the testing data.

� Perform Cubist data mining for Step 3 on “Low Cloud
Ceiling” cases only in the training data, and test the
resulting algorithm on the “Low Cloud Ceiling” cases
in the testing data.

� When satisfied with results, output an algorithm
trained on all available data for incorporation into the
final, production algorithm.

All learning experiments were based on three different
sets of variables:

1. COAMPSTM variables only.

2. GOES-10 variables only.

3. Fused COAMPSTM and GOES-10 variables.

In addition to splitting the data into training and testing
sets, the data were further separated into day and night
as determined by the solar zenith angle (where an angle
of less than or equal to

�����
is considered daytime). As

mentioned previously, complete hourly records for each
of the 18 METAR stations were collected over a 2.5 year
period. Complete records used for performance evalua-
tion included COAMPSTM output, GOES-10 data, and the
METAR cloud ceiling height. There are 263,483 complete
records for the California stations.

4 RESULTS

For each of the three steps defined in Section 3.1, four
algorithms are compared in terms of bias, accuracy, and
skill on the daytime data for all METAR stations. The four
algorithms are

1. KDD-produced algorithm using GOES-10 data.
2. KDD-produced algorithm using COAMPSTM data.
3. KDD-produced algorithm using both GOES-10 and

COAMPSTM data.
4. SW translation algorithm applied to COAMPSTM data.
For Step 1 (ceiling/no-ceiling classification), there are

51,611 randomly-selected training records and 51,690
randomly-selected testing records. The training records
are used to create the algorithm. Table 5 is a listing of the
performance statistics, on the testing set, for Step 1.

In Table 5, bias is defined as the ratio of “predicted” ceil-
ings over observed ceilings. All four algorithms tested pro-
duced a bias value less than 1.0 (Table 5), indicating an
underprediction of ceiling events or a bias toward no ceil-
ing classification. This bias is particularly strong for SW.

To measure the accuracy of the algorithms in determin-
ing cloud ceiling events, the percent correct (% correct),
probability of detection (POD), false alarm ratio (FAR), and
critical success index (CSI) (Marzban, 1998) are computed
and presented in Table 5. These measures are described
as follows, with “event” defined as ceiling for this step:

% correct is the total percentage correct for both events
and non-events.

POD (Probability of Detection) is the fraction of observed
events that were correctly predicted to exist. Ignores
false alarms.



Table 5: Ceiling/No Ceiling classification performance statistics for the four algorithms used on the California daytime
testing data set. POD: Probability of detection, FAR: False alarm ratio, CSI: Critical success index, ETS: Equitable
threat score, TSS: True skill score.

Algorithm Bias % correct POD FAR CSI ETS TSS
KDD NWP+SAT .91 93 .80 .12 .72 .66 .77
KDD SAT .91 92 .78 .14 .69 .62 .74
KDD NWP .83 87 .61 .26 .51 .42 .56
SW .34 81 .23 .32 .21 .15 .20

FAR (False Alarm Ratio) is the fraction of predicted events
that are non-events. Ignores missed events.

CSI (Critical Success Index), also known as the threat
score, is the ratio of correctly predicted events (hits)
with the total number of hits, misses, and false
alarms. Does not distinguish source of forecast er-
ror.

By any of these accuracy measurements (Table 5),
the combination of GOES-10 and COAMPSTM in the KDD
cloud ceiling algorithm produced the best results. Satellite-
only (GOES-10) algorithm scores are only slightly lower.
All three KDD algorithms are much more accurate than
SW.

The skill scores computed here include:

ETS (Equitable Threat Score) is a measure of skill that
uses chance as the benchmark. Accounts for clima-
tological event frequencies. Range of values is -.333
to +1.0 (0 is no skill).

TSS (True Skill Score - (Hanssen and Kuipers, 1965)) ex-
amines the ability of the algorithm to separate events
from non-events (accuracy of events + accuracy of
non-events - 1.0), with scores ranging from -1.0 to
+1.0. Does not depend on data distribution. The
benchmark for this score is the “naive” prediction, e.g,
event always (or never) predicted produces a TSS of
0.0 (no skill).

Based on these skill scores (Table 5), the KDD algo-
rithm incorporating both GOES-10 and COAMPSTM data
demonstrated the most skill. All three KDD cloud ceiling
algorithms have much higher skill scores than SW.

For Step 2, low/high cloud ceiling classifications (with
low cloud ceiling as the event being analyzed), there are
11,279 randomly-selected training samples and 11,199
randomly-selected testing samples. Similar to Step 1,
bias, accuracy, and skill are computed and presented in
Table 6.

The bias values of the four algorithms for this classifi-
cation step indicate a very slight bias toward low ceilings

in the KDD algorithms and a bias toward high ceilings for
SW.

Accuracy measurements shown in Table 6 are similar
for the three KDD-produced algorithms with the fused-data
algorithm having slightly better results. While SW has
comparable FAR to the KDD algorithms, the other three
accuracy scores are much lower. These results indicate
the KDD cloud ceiling algorithms minimize both misses
and false alarms, but SW frequently misses low ceiling
events.

Similar conclusions can be drawn from the skill scores
(Table 6) at this step. Compared to Step 1 (Table 5), the
skill level in Step 2 (Table 6) is much lower for all algo-
rithms except the KDD algorithm using only COAMPSTM

data. This algorithm actually has higher scores for the
low/high ceiling classification. Information from the atmo-
spheric column as seen in the COAMPSTM data is helpful in
distinguishing low ceilings from high. Contrast that result
with the KDD cloud ceiling algorithm using only GOES-
10 data. Since the satellite data features are representing
the atmosphere from an above-cloud perspective only, the
skill in detecting the existence of a ceiling is expected to
be higher than determining whether the ceiling is high or
low.

For the third step of each algorithm, the heights of the
low ceiling (less than 1000 m) cases (training - 8429 sam-
ples; testing - 8389 samples) are estimated. Performance
measures are presented in Table 7 for this step. The bias
computed for this step is equivalent to the average error of
the testing set. The KDD-produced algorithms have very
small negative bias and SW has a more substantial posi-
tive bias (Table 7).

The three accuracy measures in Table 7 were computed
as follows:

CC (Correlation Coefficient) is a measure of the relation-
ship of the algorithm output with observation. Values
range from -1.0 (perfect negative correlation) to +1.0
(perfect positive correlation). A value of 0.0 is no cor-
relation.

MAE (Mean Absolute Error) is the average difference be-
tween the algorithm output and the observation for



Table 6: Low Ceiling/High Ceiling classification performance statistics for the four algorithms used on the California
daytime testing data set.

Algorithm Bias % correct POD FAR CSI ETS TSS
KDD NWP+SAT 1.01 87 .92 .09 .84 .47 .63
KDD SAT 1.05 83 .91 .13 .80 .36 .50
KDD NWP 1.01 86 .91 .10 .83 .45 .62
SW .20 36 .17 .13 .17 .03 .10

the testing set.

RMSE (Root Mean Square Error) is

RMSE �
���� �� �� �
	���
�� �����������

(1)

where N is the number of testing samples,
� �

is the
estimated ceiling height for each testing sample, and
���

is the observed ceiling height for each sample.

RMSE is affected more by larger errors than MAE.

The four CC values (Table 7) are similar, ranging from
.57 for SW to .76 for the KDD algorithm using both data
sets (GOES-10 and COAMPSTM). However, the MAE and
RMSE are much lower for the KDD algorithms (Table 7)
with the combined data and COAMPSTM-only data produc-
ing similar MAE and RMSE values. To measure the skill
of the KDD cloud ceiling algorithms relative to SW, the fol-
lowing equation was used:

Skill � �
�������! #"$"�%���$&('

(2)

This skill score provides a single value (with a maximum
score of 1.0) of the KDD-produced algorithms’ skill level
relative to SW (Table 7). As was the case with the first
two steps, the KDD algorithm using both GOES-10 and
COAMPSTM data demonstrated the most skill. Overall, the
KDD “fused”-data algorithm had only slightly better testing
results than the KDD GOES-10-only algorithm in Step 1
and the KDD COAMPSTM-only algorithm in Steps 2 and 3.
However, when all 3 steps are examined as a total cloud
ceiling estimation algorithm, the KDD fused-data algorithm
provides the most accurate and highest skill in ceiling diag-
nosis. Table 8 provides a quick-look summary of the skill
scores (Steps 1 and 2) and correlation (Step 3) for all four
algorithms. Further testing results and algorithm analysis
can be found in Bankert et al. (in press).

5 GOES-10 CLOUD CEILING ALGORITHM EXAMPLE

The GOES-10-only KDD cloud ceiling algorithm is being
applied hourly for the southern California coast. The im-

ages in Figure 3 are the GOES-10 visible channel images
over Southern California for 8 June 2004 at 1500 UTC,
2100 UTC, and 2200 UTC, respectively from top to bottom.
All of the channel and derived (cloud optical depth, etc)
values at a given pixel (4 km resolution) are entered into
the KDD cloud ceiling height estimation algorithm and the
corresponding ceiling height output images are displayed
in Figure 4. Pixels with no ceiling are black. High ceilings
(greater than 1000 m or 3280 ft) are marked as white. Low
cloud ceiling pixels are colored using the scale provided.

These cloud ceiling height images provide a good ex-
ample of the ceiling height rising throughout a given day
or the ceiling dissipating entirely from early morning to af-
ternoon. KVNY (Van Nuys), location marked on the 1500
UTC image of Figure 3, reported a cloud ceiling of 1800 ft
at 1451 UTC, 3900 ft at 2051 UTC, 4100 ft at 2151 UTC.
KLAX (Los Angeles), location marked on the 1500 UTC
image of Figure 3, reported a ceiling height of 2100 ft at
1450 UTC and no ceiling at 2050 UTC and 2150 UTC. The
1450 UTC 1300 ft cloud ceiling height at KPOC (LaVerne),
location marked on the 2100 UTC image of Figure 3, was
raised to 2900 ft and 3000 ft at 2047 UTC and 2147 UTC,
respectively. A ceiling height of 1500 ft was reported by
KOKB (Oceanside), location marked on the 2100 UTC im-
age of Figure 3, at 1456 UTC, followed by a 4600 ft ceil-
ing at 2056 UTC and no ceiling at 2156 UTC. KSAN (San
Diego International Airport), location marked on the 2200
UTC image of Figure 3, reported a cloud ceiling height of
1500 ft at 1451 UTC, 3500 ft at 2051 UTC, and no ceiling
at 2151Z. By subjective visual inspection of the KDD algo-
rithm output relative to these station locations, this cloud
ceiling height estimation algorithm appears to give a fairly
accurate diagnosis of the cloud ceiling situation.

This case study demonstrates the potential usefulness
of any point-location validation efforts, but there are pit-
falls. For example, KSNA (Santa Ana), location marked on
the 2100 UTC image of Figure 3, reported a ceiling height
of 1900 ft at 1453 UTC. At 2053 UTC there was no ceil-
ing reported. However, a 2400 ft ceiling was reported at
2153 UTC which was closely followed by a report of no
ceiling at 2208 UTC. This type of changing cloud ceiling
environment at a specific location makes it difficult for vali-
dation of the algorithm as it takes a snapshot at a specific



Table 7: Low Ceiling Height Estimation performance statistics for the four algorithms used on the California daytime
testing data set. CC: Correlation coefficient, MAE: Mean absolute error, RMSE: Root mean square error.

Algorithm Bias (m) CC MAE (m) RMSE (m) Skill
KDD NWP+SAT -1.17 .76 120.6 168.0 .75
KDD SAT -2.19 .64 149.5 189.3 .69
KDD NWP -2.09 .75 124.2 162.2 .74
SW 50.6 .57 478.5 714.6 —

Table 8: Performance summary for each of the four algorithms at each step. TSS = True Skill Score; CC = Correlation
Coefficient.

KDD SAT KDD NWP KDD NWP+SAT SW
Step 1 (TSS) .74 .56 .77 .20
Step 2 (TSS) .50 .62 .63 .10
Step 3 (CC) .64 .75 .76 .57

time with a 4 km horizontal resolution. Similarly at KWYF
(San Diego), location marked on the 2200 UTC image of
Figure 3, a 2000 ft ceiling was reported at 2053 UTC, but
by 2103 UTC it had risen to 3100 ft. Finally, KLPC (Lom-
poc), location marked on the 1500 UTC image of Figure 3,
reported a 900 ft cloud ceiling at 1515 UTC, no ceiling at
2055 UTC, and a 100 ft ceiling at 2155 UTC. The GOES-
10-only KDD algorithm appears to be getting some signal
in this area, but the cloud area size and timing aspects
may be beyond the limitations of this type of algorithm.

6 CONCLUSION

The results from analysis of the California daytime data
set demonstrate the potential and viability of using KDD to
develop algorithms from NWP and/or satellite data for es-
timating cloud ceiling conditions. Taking advantage of the
unique characteristics of each data type, a KDD-produced
algorithm that applies both COAMPSTM and GOES-10 data
performed the best over the entire 3-step cloud ceiling es-
timation system. All three KDD-produced algorithms per-
formed significantly better than the currently operational
SW algorithm.

The initial expectation that a combination of satellite and
COAMPSTM data in a KDD-produced algorithm would pro-
duce the highest skill scores was met. It is also worth not-
ing that the skill level of the KDD-produced algorithm using
satellite data alone to diagnose quantitative cloud ceiling
height is remarkably high. Of course, multi-layered cloud
situations would present a problem if satellite data was the
only data source available.

The opportunities for future research using the current
database include, but are not limited to, data mining for a

cloud ceiling algorithm using data from all three regions
studied (Adriatic and Korea in addition to California) to de-
termine if and how a generalized (not region specific) al-
gorithm can be developed, determining a method to incor-
porate polar-orbiting satellite data, developing and exam-
ining satellite and COAMPSTM combined forecast (i.e, not
diagnostic) algorithms, and data mining for other weather
elements, including visibility.
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Figure 3: GOES-10 visible images over Southern California and adjacent waters on 8 June 2004 at 1500 UTC (top),
2100 UTC (middle), and 2200 UTC (bottom).



Figure 4: Cloud ceiling heights (ft) images (8 June 2004) as derived from GOES-10 data using KDD-developed
algorithm. Top: 1500 UTC; Middle: 2100 UTC; Bottom: 2200 UTC


