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1. INTRODUCTION

Satellite remote sensing has become the primary
method of precipitation monitoring over much of the
earth, and microwave-based satellite retrievals have
rapidly advanced over the past two decades. The Ad-
vanced Microwave Sounding Unit (AMSU), first launched
in 1998, includes channels at 89 and 150 GHz that are
well-suited for detecting the signatures of precipitation.
Data from these channels have shown great promise
both for delineating the areal extent of precipitation
and for estimating the precipitation rate. In particular,
these frequencies allow for retrievals over land surfaces;
this sets them apart from lower frequency algorithms
which are designed to detect the emission signature as-
sociated with rainfall in the marine environment.

The objective of this study is to evaluate and inter-
compare three over-land precipitation detection meth-
ods developed for the AMSU. Algorithm performance
and calibration is evaluated based on the Heidke skill
score applied to matchups between radar- and AMSU-
derived rain rates. The purpose is to select an AMSU
algorithm that is adequate for real-time precipitation
monitoring over much of North America.

2. DATA AND ALGORITHMS

Data collected by AMSU on board the NOAA-16 po-
lar orbiting satellite were collected for the period cov-
ering November 2002 through September 2003 in order
to achieve a substantial sample size and to assess the
effect of seasonality on AMSU precipitation retrievals.
WSR-88D NEXRAD data were also archived for use
as a ground benchmark after being co-located and con-
volved to the AMSU resolution on a pixel-by-pixel basis.
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Two general algorithmic approaches to rain rate re-
trieval were considered, but each is linked to the mi-
crowave scattering signature of frozen hydrometeors
in the upper parts of most midlatitude rain clouds.
The first of these approaches, adopted by the NES-
DIS Microwave Surface and Precipitation Products Sys-
tem (MSPPS) team, is based on a physical model of
the relationship between the microwave signature of ice
aloft and the corresponding surface rain rate. Details of
this algorithm are presented in Weng and Grody (2000)
and Zhao andWeng (2002). The basis for this algorithm
is a scattering parameter (denoted by Ω), which mea-
sures the brightness temperature difference between an
AMSU measurement taken in the presence of precipita-
tion and a modeled precipitation-free measurement of
the same scene. An ice water path product is derived
from Ω, and, as a final step, rain rates are computed as
a function of ice water path based on cloud modeling
results.

The other general retrieval methodology is empiri-
cal and serves as the basis for our two in-house algo-
rithms. These were developed as simple experimen-
tal alternatives to the NESDIS algorithm. They rely
on climatological mean Tb values observed by selected
AMSU-B channels; the climatological mean (computed
at monthly intervals) serves as a background on which
to compare individual AMSU swaths. The goal is to
identify individual pixels that display a significant neg-
ative departure in Tb at frequencies most sensitive to
hydrometeor scattering. The 89 and 150 GHz channels
are useful in precipitation monitoring studies because
of their sensitivity to lower atmospheric features, and
were therefore included in the climatological algorithm
component of this study.

One algorithm is based solely on the 150 GHz chan-
nel, and the precipitation signature is captured using
the formula

δT1 = Tb,150 − Tb,150, (1)



where δT1 is the Tb depression, Tb,150 is the monthly
mean Tb for a local two degree grid box, and Tb,150 is
simply the AMSU-measured Tb for the pixel in question.
Thus a positive value of δT1 represents a Tb depression.
Precipitation generally creates Tb depressions ranging
from 15 K to approximately 150 K; smaller depressions
are more likely caused by natural variability.

The second climatology algorithm relies on the as-
sumption that the 89 and 150 GHz channels respond
to precipitating scenes differently than they respond to
clear scenes, and the precipitation signature is described
by the formula

δT2 = (Tb,150 − Tb,89)− (Tb,150 − Tb,89) = δT − δT,

where the barred terms represent monthly mean val-
ues, and the unbarred terms represent individual AMSU
measurements. In precipitation, the scattering of up-
welling radiation by ice particles was typically observed
to depresses Tb,150 below Tb,89. Thus δT tends to be
significantly less than zero in precipitation. In a clear
scene over ocean, δT tends to be greater than zero due
to the strong response of Tb,150 to water vapor emission;
this is particularly true in the tropics or other regions
experiencing high humidity. In a clear scene over land,
δT tends to be approximately equal to zero as both 89
and 150 GHz respond to the highly emissive land sur-
face rather than the weaker water vapor signal. Thus
δT2 is positive in precipitation and negative or near-zero
in clear scenes.

3. STRATEGY FOR CALIBRATION

The Heidke skill score (HSS) is a measure of the skill
(relative to chance) of a method used to make a binary
classification and is obtained via a formula applied to
a 2 contingency table (columns represent “yes” or “no”
according to the algorithm and rows represent “yes”
or “no” according to the “truth” data set). Applied
to satellite rainfall estimation, the HSS has sometimes
been utilized to characterize the performance of an algo-
rithm at distinguishing rain from no rain, as compared
to a validation data set such as radar.

Conner and Petty (see Conner and Petty (1998))
pointed out a problem with applying the skill score to
precipitation verification based on the mere presence or
absence of rain. In particular, the threshold of sensi-
tivity of the estimation method may be incompatible
with the validation method, so that that the resulting
single-value HSS is misleading. They proposed instead
to compute HSS as a function of two continuously vary-
ing thresholds of rainfall rate, one applied to the vali-
dation data and the other applied to the retrieval. This
allows one to evaluate the maximum skill with which a
particular algorithm can distinguish rain rates greater

than any arbitrary threshold applied to the validation
data. Among other things, this method allows the “in-
trinsic” skill of the algorithm to be evaluated indepen-
dently of any systematic calibration errors, a feature
not shared by a standard performance measure such
as the RMS error. Moreover, the maximum skill for a
particular validation threshold is invariant with respect
to non-linear calibration errors, unlike the case for the
linear correlation coefficient.

The maximum HSS is identified by dividing the range
of radar-derived rain rates and AMSU-derived rain rates
(or Tb depressions, as in the case of the climatology-
based algorithms) each into 100 equal intervals and
computing the HSS for all combinations of radar and
algorithm thresholds. In this way, the HSS is computed
as a two-dimensional function of varying algorithm and
verification thresholds. The radar-derived rain rates are
divided into intervals beginning at 0 and extending to
10 mm hr−1 while the algorithm-derived rain rates are
divided into intervals extending from 0 mm hr−1 (or K)
to the maximum algorithm output value occurring in
the data set. Thus 10 000 scores are computed and the
maximum score determines the combination of radar
and AMSU thresholds that provides greatest confidence
in algorithm performance.

Two-dimensional contour plots of HSS are then cre-
ated, with NEXRAD thresholds on the ordinate and
algorithm thresholds on the abscissa. These plots also
identify, for any given NEXRAD threshold, the algo-
rithm threshold that maximizes algorithm skill. This
can be taken a step further by identifying HSS maxima
for various NEXRAD thresholds and plotting a best-
fit line through these maxima points. The best fit line
thus identifies the axis of maximum HSS on the two-
dimensional contour plot. The HSS contour plot of a
robust algorithm will exhibit a linear axis of (high) max-
imum skill, and this axis would have a slope near unity.
If this has a slope significantly less than unity, then
one may infer that the algorithm consistently overes-
timates rain intensity. The best-fit line also serves as
a calibration curve which relates algorithm output to
NEXRAD-derived rain rate.

4. RESULTS

The training set consisted of all even-numbered dates;
calibration curves were derived from these dates, and
the calibrations were tested using data from the odd-
numbered dates. The calibration established a radar-
adjusted NESDIS rain rate product, and it allowed for
the conversion of δT1 and δT2 into rain rate estimates.
Calibration was carried out on both a month-by-month
basis, and on the entire data set. HSS contour plots
and calibration curves derived from the entire data set



Fig. 1. Heidke skill score contour plots for the entire
11-month data set for the three algorithms. Calibration co-
efficients and maximum HSS values are listed to the right
of each algorithm plot. The + symbols represent points of
maximum HSS for various validation thresholds, and the
dashed lines are polynomial fits to these points of maximum
HSS.

are given in Fig. 1.
The calibrations were evaluated using a technique

previously used, for example, by Ferraro and Marks
(1995). The NEXRAD rain rates were binned into 1
mm hr−1 intervals, and the mean AMSU-derived rain
rate was computed within each bin. This analysis there-
fore examines the sensitivity of the AMSU retrievals
to precipitation intensity. The mean AMSU rain rates
tended to be highly correlated with the NEXRAD rain
rate bins, as correlation coefficients of 0.869, 0.822 and
0.303 were achieved by the NESDIS, one channel and
two channel algorithms, respectively. Although all three
AMSU algorithms provided nearly perfectly correlated
and unbiased mean values for low rain rates, a clear low
bias was present in the AMSU retrievals for NEXRAD
rain rates above approximately 7 mm hr−1. The radar
Z-R relationship may be partly responsible because re-

flectivities above 50 dBZ correspond to extremely high
rain rates. Several high rates averaged within an AMSU
pixel may lead to a high bias in the radar retrievals.
Subsampling effects produced by the lower AMSU res-
olution may further enhance the AMSU low bias; the
larger sampling area may smooth the hydrometeor scat-
tering signal and cause underestimates at high rain
rates.

The low correlation coefficient achieved by the two
channel algorithm in this analysis may be attributed in
part to coastal effects. Coastal pixels, which contain
a fraction of high-emissivity land and lower-emissivity
water, caused a high bias in the AMSU rain rate esti-
mate as the algorithm was calibrated only for land sur-
faces. In a clear scene, the 89 and 150 GHz Tb tend to be
similar over land, but the 150 GHz Tb tends consistently
exceed the 89 GHz Tb over ocean. Thus, separate land
and ocean calibrations would be required. Since the
data set is heavily weighted toward light rain events,
the inclusion of occasional coastal errors likely compro-
mises the binning analysis results for higher rain rates.
Further analysis will require more stringent screening
near coastal areas.

Figure 2 shows imagery from 22 Sep 2003 in which
all three algorithms are generally successful. Unisys
surface maps from 12Z on 22 Sep and 00Z on 23 Sep
indicate a surface low near lower Michigan, and an as-
sociated cold front sweeping across most of the eastern
and southern states. The frontal rain band is unmis-
takably delineated by the three algorithms, demonstrat-
ing that strong hydrometeor scattering is producing an
identifiable signature in the AMSU data. There are nu-
merous occurrences of isolated precipitation that were
missed by the AMSU algorithms, however. Optimisti-
cally, some of these may be due to radar error (e.g.
ground clutter). Others may have spatial scales that are
below the resolution of the AMSU sensor, and therefore
the associated scattering signature is diminished due to
subsampling effects. However, in cases of widespread
stratiform precipitation (not shown), all algorithms ex-
perienced difficulty in resolving the precipitation signa-
ture as any associated hydrometeor scattering was too
weak to be resolved.

5. CONCLUSIONS

All three algorithms were approximately equally suc-
cessful in delineating precipitation areal extent over
land surfaces. Although the NESDIS algorithm is
more physically-based, it apparently does not provide
a marked improvement in skill based on the analyses
employed in this study. In fairness, the NESDIS algo-
rithm is designed for global application, while the em-
pirical algorithms described herein have been optimized



Fig. 2. Visual representation of co-located algorithm and NEXRAD output. Colored areas in the algorithm plots represent
AMSU pixels for which the spatially-averaged NEXRAD data also gave a positive rain rate. Black areas represent failed
detection by an AMSU algorithm, and dark gray regions represent AMSU-retrieved precipitation that was not present in
the radar data.

for the continental United States. Therefore, the results
described here cannot be safely extrapolated to more di-
verse geographic areas. For example, warm-cloud con-
vective processes tend to be more widespread in tropical
regions (Petty 1999), and no testing was performed to
assess algorithm skill in such regions. It is hypothesized
that significant biases would develop if algorithms cali-
brated to cold-cloud convective activity were applied to
other climate regimes.
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