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1. INTRODUCTION

Regional scale Eulerian air quality (AQ) models are
typically limited to relatively coarse grid resolutions
when simulating mean pollutant concentrations for each
grid cell volume. However, emergency management,
human exposure and risk assessment require more
detailed information on the location and magnitude of
hazardous air pollutant, or air toxics, concentrations,
with a particular interest in capturing extreme values, or
“hot spots.”  Though continuous advancements in
computing power and improvements in nested grid
techniques have allowed regional scale air quality
models to simulate down to one kilometer grid spacing,
this resolution is inadequate in urban areas for human
exposure modeling based on census ftracts.
Developments in neighborhood scale modeling using
computational fluid dynamics (CFD) and coupled large-
eddy simulation (LES) with photochemistry techniques
allow AQ simulations with grid spacings of meters to
tens of meters for domains limited to several kilometers,
but these types of simulations are impractical for long
time integrations or operational use. To bridge the gap
between regional and neighborhood scale AQ models,
some procedure is needed to represent the subgrid
extreme pollutant concentrations in regional models
without requiring concurrent fine resolution simulations.

The purpose of the present research is to develop a
methodology and associated software tools to perform
statistical analyses on available fine resolution gridded
model results in order to quantify the subgrid pollutant
variability not represented in current regional air quality
models. Desired products include, but are not limited to,
pollutant probability density functions (pdfs) for use in
human exposure models and new parameterizations to
represent subgrid pollutant variability in regional air
quality prediction systems. Our current specific goal is
to determine pollutant pdf characteristics and
parameters to be used as input to the Hazardous Air
Pollutant Exposure Model (HAPEM) (see
http://www.epa.gov/ttn/fera/human_hapem.html).

2. APPROACH

Relatively fine resolution model results have been
used as statistical sample data during the development
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of our methodology for quantifying subgrid pollutant
variability. To treat the sample data with complete
objectivity, the Exploratory Data Analysis (EDA)
approach was used (NIST/SEMATECH 2003). EDA
emphasizes numerous graphical techniques, along with
several quantitative techniques, to reveal to the analyst
the underlying structure of the sample data set. In
essence, the data lead the analysis; no presumptions
about the data are made. For performing EDA, the
National Institute of Standards and Technology (NIST)
has made freely available a companion statistical
analysis software package called Dataplot (Filliben
1982, 1984). Though primarily designed for interactive
data exploration, Dataplot also supports a powerful
scripting capability for more complex automated tasks.
For this reason, the fact that Dataplot runs on most
computing platforms (e.g. Unix, Linux, Windows), and
the availability of the well-tested Dataplot statistical
routines as open-source Fortran77 code, Dataplot was
chosen as the base tool for developing the subgrid
pollutant variability analysis methodology of the present
research.  (Dataplot information can be found at
http://www.itl.nist.gov/div898/software/dataplot/.)

The Dataplot command script under development
for this research has been dubbed Concentration
Distribution Function —ware, or CDFware. Currently,
CDFware uses the EDA approach to systematically
analyze fine resolution gridded model results to
objectively determine best-fit univariate distributions
which represent subgrid pollutant concentration
variability. For each sample pollutant concentration
data set, CDFware conducts numerous statistical tests
and produces various graphical and text outputs on its
way to determining the best distribution pdf to fit the
data. CDFware first produces a summary table which
provides copious statistical quantities (midrange, mean,
median, standard deviation, etc., plus various quantiles,
moments, and probability plot correlation coefficients).
Then for a quick visual overview of the data set, a
standard 4-plot analysis is produced, which consists of a
run sequence plot (to check for outliers and for drift in
the sample location and its variation), a lag plot (to
check data randomness), a histogram (to view the data
distribution shape), and a normal probability plot (which
is a straight line if the data are normally distributed).
CDFware next produces a bootstrap plot to find the best
location parameter for the data (mean, median, or
midrange), followed by a runs test and an
autocorrelation plot to check randomness (i.e., a lack of
spatial or temporal correlation within a sample set). A




two-iteration Tukey-Lambda probability plot correlation
coefficient (PPCC) plot is generated next to indicate the
best symmetrical distribution family that might fit the
data. To eliminate the simplest distribution cases first,
CDFware then checks for a uniform distribution using a
uniform probability plot fit criteria and for a normal
distribution using the Anderson-Darling test. Data
variation drift is checked next using the Bartlett test for
the normal case and the Levene test for nonnormal
data. Based on the answers to several of these tests,
CDFware determines whether the sample is under
“statistical control.” The presence of outliers is checked
next using Grubbs’ test. If the data were determined to
be nearly uniform, then CDFware produces a relative
histogram plot with a fitted uniform pdf, plus a uniform
probability plot with a fitted line. If the data were found
to be approximately normal, then a relative histogram
with fitted normal pdf plot is created along with a normal
probability plot with fitted line. If neither uniform nor
normal, CDFware makes one last symmetric distribution
check by creating logistic distribution PPCC and
probability plots if the Tukey-Lambda shape parameter
is less than 0.05.

By this point the sample data set has been
determined to be asymmetrical. If the skew is positive,
CDFware currently tests for a best-fit from these ten
right-skewed distributions: Weibull (extreme value
distribution based on the minimum order statistic),
lognormal, gamma, power normal, power lognormal,
skewed normal, Frechet (type II extreme value
distribution using the maximum order statistic),
generalized extreme value, inverted Weibull, and chi-
squared. If the data skew is negative, CDFware
currently tests for a bestfit from two left-skewed
extreme value distributions: Weibull (based on the
maximum order statistic) and Frechet (based on the
minimum order statistic). Two-iteration PPCC plots, the
appropriate probability plot, and a relative histogram plot
with a fitted distribution pdf are produced for each
distribution. CDFware then automatically compares the
maximum PPCC values to determine the best
distribution fit (currently selecting the distribution with
the highest maximum PPCC value). The CDFware
analysis finishes by producing a report summarizing the
statistical findings and the chosen distribution pdf with
parameters, plus a concise output data file for use as a
source in building input files for other plotting packages.

Several underlying assumptions must be met in
order for a univariate statistical model to be valid: 1) the
sample data are uncorrelated with one another, 2) the
random component has a fixed distribution, 3) the
deterministic component consists of only a constant,
and 4) the random component has fixed variation
(NIST/SEMATECH 2003). As described earlier,
CDFware checks that these assumptions are satisfied
and records its findings in a data set summary report.

3. EXAMPLE RESULTS
Output from the 1.33 km-spaced nested grid of the

Community Multiscale Air Quality (CMAQ) modeling
system (Ching and Byun 1999) is being used during the

development of the subgrid concentration variability
methodology and the CDFware postprocessing
package. (Additional CMAQ information can be found
at  http://www.epa.gov/asmdnerl/models3/cmaq.html.)
Any fine resolution model output could have been
statistically analyzed, but our focus in a related research
project is on creating a link between the CMAQ-
provided air toxics concentrations and HAPEM (Ching et
al. 2004). All CDFware results discussed here are
derived from the 1.33 km grid ground-level pollutant
concentration output of a CMAQ simulation of the
Philadelphia, Pennsylvania, area for 14 July 1995.

3.1 Sample Data from a CMAQ Case Study

Surface acetaldehyde (ALD2) mixing ratios for
15:00 LST on 14 July 1995 are shown in Fig. 1 at two
different grid resolutions. Figure 1a shows the mean
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FIG. 1. Mean surface mixing ratio of acetaldehyde

(ALD2) for 15:00 LST 14 July 1995 from a CMAQ
simulation of the Philadelphia, PA, area shown at (a) 1.33
km grid spacing and (b) 12 km grid spacing. Area coverage
and color spectrum range are set to the same scale to
facilitate comparison.
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ALD2 mixing ratio taken directly from the CMAQ output
at the finest nested grid of 1.33 km grid spacing. There
are 99x99 of the (1.33 km)? cells in Fig. 1a, with the
southwest corner located at 39.4667° N latitude and
76.0147° W longitude, and the northeast corner at
40.4424° N and 74.1507° W. Figure 1b shows the
mean ALD2 mixing ratio for 10x10 (12 km)2 grid cells
derived from the averaging of 9x9 blocks of the 1.33 km
output. Scales for the area coverage and mixing ratio
range were kept the same to facilitate comparison of
Figs. 1a and 1b. As expected, the details and extreme
values (such as point sources and other “hot spots”)
seen in Fig. 1a are lost in the averaging shown in Fig.
1b. Though present to varying degrees at all grid
resolutions in Eulerian models, clearly the averaging
inherent in relatively coarse grid regional air quality
models often results in an inadequate representation of
extreme concentrations needed for exposure models.

The pollutant subgrid concentration variability
missing in Fig. 1b is illustrated by the ALD2 histograms
of Fig. 2 for each (12 km)2 grid cell. The histograms for
12 km cells (104, J02) and (104, J04) reflect the
presence of the bright red to pink ALD2 point sources
seen in Fig. 1a. Note the general variety of distribution
shapes, with no obvious pattern to the layout. Both
spatially and temporally, this sort of distribution
complexity exists, more or less, for the other
investigated CMAQ pollutants such as carbon monoxide
(CO), ozone (O3), nitric oxide (NO), nitrogen dioxide
(NO3), and formaldehyde (FORM).

3.2 CDFware Analysis of Acetaldehyde

In an attempt to sort out the complexity of Fig. 2,
the CDFware distribution analysis program was applied
to the 15:00 LST acetaldehyde mixing ratio data. Each
(12 km)2 grid cell, each consisting of a set of 81
randomized “sample data” from the original 1.33 km
grid, was analyzed according to the procedure
described in section 2.

An example 4-plot analysis from CDFware for 12
km cell (108, JO3) appears in Fig. 3. A quick inspection
of the four subplots reveals that the data are free from
drift, random, have a positive skew, and are nonnormal.
A 4-plot analysis is produced for each grid cell data set
and provides a visual summary of the data set
characteristics.

The Tukey-Lambda shape parameter A for the
15:00 LST ALD2 concentrations for each (12 km)? grid
cell is shown in Fig. 4. The shape parameter provides
guidance as to which family of symmetrical distributions
the data may belong according to the following
(NIST/SEMATECH 2003): A = -1 for an approximately
Cauchy distribution, 4 = 0 for exactly logistic, 1 = 0.14
for approximately normal, 4 = 0.5 for a U-shaped
distribution, and 4 = 1 for an exactly uniform distribution.
Tukey-Lambda shape parameters less than 0.14
indicate increasingly heavy or long-tailed distributions as
A goes to -1, while shape parameters larger than 0.14
indicate shorter-tailed distributions. The two 12 km cells
that contain the ALD2 point sources, (4, 2) and (4, 4),
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Fic. 3. Example 4-plot analysis from CDFware for
acetaldehyde at 15:00 LST 14 July 1995 for (12 km)? cell
(8, 3) from the CMAQ simulation.

stand out as long-tailed distributions in Fig. 4 due to the
interpretation of the sources as outliers. Several cells,
including the downtown Philadelphia cell at (5, 5), are
shown to be approximately uniform and generally agree
with several of the corresponding histograms of Fig. 2.
However, the downtown cell, for example, is actually
bimodal. This test shows that the Tukey-Lambda shape
parameter loses value as a distribution family indicator
when the data set is not unimodal nor symmetrical.

An example CDFware-generated PPCC plot set for
the positively skewed ALD2 concentration distribution of
cell (108, JO3) is shown in Fig. 5. Of the ten distribution
types tested against the data, this gamma distribution
produced the closest fit as judged by its having the
largest maximum PPCC value (0.995588 after two
iterations) and supported by the reasonably good fit to
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FIG. 4. Tukey-Lambda shape parameter for acetaldehyde
for each (12 km)? cell at 15:00 LST 14 July 1995.
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FiG. 5. Example probability plot correlation coefficient
(PPCC) plot set from CDFware for acetaldehyde at 15:00
LST 14 July 1995 for (12 km)? cell (8, 3).

the straight line in the gamma probability plot. The
gamma probability density function curve is also seen
as having a good fit to the relative histogram of the
sample data.

Figure 6 shows the final best-choice distribution
types (in no particular order) for the 15:00 LST subgrid
acetaldehyde mixing ratios at 12 km grid spacing as
determined by the CDFware subgrid concentration
variability analysis package. Quite a bit of distribution
variety and no discernible pattern can be seen in these
results.  The resulting number of cells for each
distribution type in this case is: uniform 12, normal 13,
Weibull for positive skew 15, lognormal 4, gamma 3,
power normal 10, power lognormal 6, skewed normal
13, Frechet for positive skew 6, generalized extreme
value 3, inverted Weibull 2, chi-squared 1, Weibull for
negative skew 10, and Frechet for negative skew 2.

For skewed distributions, CDFware currently
chooses the best-fit distribution based solely on the
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FiG. 6. Map of best-choice distribution type for each (12
km)2 grid cell as determined by CDFware for acetaldehyde
at 15:00 LST 14 July 1995 from the CMAQ simulation.

Gen. Extreme Val.

maximum PPCC value. In practice, there is usually not
much difference between the maximum PPCC values of
the top few choices for each data set. For example, the
gamma distribution shown earlier for 12 km cell (108,
J03) had a maximum PPCC value of 0.995588, but chi-
squared, lognormal, and Weibull distribution fits for the
same cell yielded maximum PPCC values of 0.995585,
0.995367, and 0.995044, respectively, meaning these
are all nearly equally good fits to the data.

3.3 Weibull-Only Analysis of Acetaldehyde

The seeming chaotic arrangement of distributions
shown in Fig. 6 and the often small differences between
distribution maximum PPCC values for a given cell
motivated a subjective approach to the subgrid
concentration distribution analysis. Because the Weibull
distribution accounted for the largest share (25%) of the
CDFware-chosen distributions for the 15:00 LST ALD2,
the assumption was made that a Weibull distribution
could be successfully applied to the entire domain.
Perhaps by choosing a single distribution model such as
Weibull, patterns in the pdf parameters may emerge that
will assist in the development of parameterizations for
subgrid pollutant concentrations.

Figure 7 shows the relative histogram version of
Fig. 2 for acetaldehyde, this time with the fitted Weibull
pdf curves overlaid. Some of the Weibull fits are quite
good, such as for 12 km cells (103, J08), (105, J03), and
(110, JO5). Other Weibull pdf fits are not so good, such
as for cells (101, J04), (102, J10), and (106, JO7). In
general, though, the Weibull distribution does a
reasonable job of representing the extreme values
present in some of these sample ALD2 data.

For each fitted distribution, in addition to the
maximum PPCC value, CDFware determines all
parameters needed to construct the probability density
function. Maps of these values for the 15:00 LST
acetaldehyde Weibull-only analysis are shown in Fig. 8.

The goodness-of-fit for each Weibull distribution
can be gauged by examining Fig. 8a. Most maximum
PPCC values are above 0.98, but as expected, a few
(12 km)? cells stand out as relatively poor Weibull fits,
thus implying that a different distribution model would be
more appropriate for these cells.

Figures 8b-d illustrate the individual parameters
used in the general form of the Weibull distribution pdf
(Bury 1999), shown in Eq. (1) for the minimum order
statistic (for positive skew):

A x- A x—u\*
f(x;”’a’ﬂ):E{ a#] exp{'(Tﬂj} 1)

forx,u>0and o, 1>0

where A is the shape parameter, y is the location
parameter and o is the scale parameter. The location
parameter locates the model f on its measurement axis,
which for a Weibull distribution is not the same as the
mean for a normal distribution. This fact can be verified
by comparing Figs. 8c and 1b (even though the tile color
ranges are different). Likewise, the Weibull scale
parameter is not the same as the standard deviation of
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Fic. 8. Weibull probability density function parameters generated by a special Weibull-only version of CDFware for
acetaldehyde at 15:00 LST 14 July 1995 from the CMAQ Philadelphia study. Shown are (a) the maximum probability plot
correlation coefficient (PPCC) value, (b) the Weibull shape parameter A, (c) the Weibull location parameter x, and (d) the Weibull

scale parameter ¢ for each (12 km)® grid cell.

a normal distribution, though each denote the relative
horizontal stretching or contracting of the distribution.

The Weibull shape parameter values shown in Fig.
8b reveal no particular pattern, but the 12 km cells
containing the acetaldehyde point sources, cells (4, 2)
and (4, 4), distinctly show low shape parameter
magnitudes. The Weibull location parameters of Fig. 8c
display just a hint of the southwest-northeast structure
of the ALD2 mixing ratio field of Fig. 1a. And finally, the
Weibull scale parameters in Fig. 8d have mostly
randomly placed small values, except for the SW-NE
“plume” seen starting from the downtown Philadelphia
cell (5, 5) which has relatively large values of o.
Adapting these results into a new subgrid pollutant
variability parameterization would be difficult.

4. CONCLUSIONS

Results from CDFware analyses of the CMAQ
model results for acetaldehyde (ALD2) at 15:00 LST on
14 July 1995 from the Philadelphia case study were
presented here and the current findings generally did
not reveal any discernible pattern or order. Other
CMAQ pollutants have been analyzed with CDFware
and have also yielded essentially inconclusive results.
The CDFware distribution fitting works well and its
results can still enhance the input stream to the human
risk and exposure models, especially as pertains to the
higher resolution urban census tract scales. But the
desire to utilize CDFware analyses results to develop
parameterizations of subgrid pollutant variability for use
in coarse grid regional air quality models remains
unfulfilled for now.



This research is a work in progress and
development continues on refining and improving the
Concentration Distribution Function -ware (CDFware)
subgrid pollutant concentration variability analysis
program. Desired CDFware improvements would
include the ability to detect multimodal (particularly the
relatively common bimodal) data distributions and to fit
mixed multiple distributions, such as a mixture of two
Weibull distributions in the bimodal case, to the data set.
CDFware will also be applied to higher resolution output
from neighborhood-scale models in order to determine
whether more coherent parameter fields can be
detected at the finer resolutions.
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