
7.5  QUANTIFYING SUBGRID POLLUTANT VARIABILITY  
IN EULERIAN AIR QUALITY MODELS 

 
 

Jerold A. Herwehe* 
NOAA/ARL/Atmospheric Turbulence & Diffusion Division, Oak Ridge, Tennessee 

 
Jason K. S. Ching and Jenise L. Swall 

NOAA/ARL/ASMD on assignment to USEPA/NERL, Research Triangle Park, North Carolina 
 

                                 
 
1. INTRODUCTION   
 
 Regional scale Eulerian air quality (AQ) models are 
typically limited to relatively coarse grid resolutions 
when simulating mean pollutant concentrations for each 
grid cell volume.  However, emergency management, 
human exposure and risk assessment require more 
detailed information on the location and magnitude of 
hazardous air pollutant, or air toxics, concentrations, 
with a particular interest in capturing extreme values, or 
�hot spots.�  Though continuous advancements in 
computing power and improvements in nested grid 
techniques have allowed regional scale air quality 
models to simulate down to one kilometer grid spacing, 
this resolution is inadequate in urban areas for human 
exposure modeling based on census tracts.  
Developments in neighborhood scale modeling using 
computational fluid dynamics (CFD) and coupled large-
eddy simulation (LES) with photochemistry techniques 
allow AQ simulations with grid spacings of meters to 
tens of meters for domains limited to several kilometers, 
but these types of simulations are impractical for long 
time integrations or operational use.  To bridge the gap 
between regional and neighborhood scale AQ models, 
some procedure is needed to represent the subgrid 
extreme pollutant concentrations in regional models 
without requiring concurrent fine resolution simulations. 
 The purpose of the present research is to develop a 
methodology and associated software tools to perform 
statistical analyses on available fine resolution gridded 
model results in order to quantify the subgrid pollutant 
variability not represented in current regional air quality 
models.  Desired products include, but are not limited to, 
pollutant probability density functions (pdfs) for use in 
human exposure models and new parameterizations to 
represent subgrid pollutant variability in regional air 
quality prediction systems.  Our current specific goal is 
to determine pollutant pdf characteristics and 
parameters to be used as input to the Hazardous Air 
Pollutant Exposure Model (HAPEM) (see 
http://www.epa.gov/ttn/fera/human_hapem.html). 
 
2. APPROACH 
 
 Relatively fine resolution model results have been 
used as statistical sample data during the development 
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of our methodology for quantifying subgrid pollutant 
variability.  To treat the sample data with complete 
objectivity, the Exploratory Data Analysis (EDA) 
approach was used (NIST/SEMATECH 2003).  EDA 
emphasizes numerous graphical techniques, along with 
several quantitative techniques, to reveal to the analyst 
the underlying structure of the sample data set.  In 
essence, the data lead the analysis; no presumptions 
about the data are made.  For performing EDA, the 
National Institute of Standards and Technology (NIST) 
has made freely available a companion statistical 
analysis software package called Dataplot (Filliben 
1982, 1984).  Though primarily designed for interactive 
data exploration, Dataplot also supports a powerful 
scripting capability for more complex automated tasks.  
For this reason, the fact that Dataplot runs on most 
computing platforms (e.g. Unix, Linux, Windows), and 
the availability of the well-tested Dataplot statistical 
routines as open-source Fortran77 code, Dataplot was 
chosen as the base tool for developing the subgrid 
pollutant variability analysis methodology of the present 
research.  (Dataplot information can be found at 
http://www.itl.nist.gov/div898/software/dataplot/.) 
 The Dataplot command script under development 
for this research has been dubbed Concentration 
Distribution Function �ware, or CDFware.  Currently, 
CDFware uses the EDA approach to systematically 
analyze fine resolution gridded model results to 
objectively determine best-fit univariate distributions 
which represent subgrid pollutant concentration 
variability.  For each sample pollutant concentration 
data set, CDFware conducts numerous statistical tests 
and produces various graphical and text outputs on its 
way to determining the best distribution pdf to fit the 
data.  CDFware first produces a summary table which 
provides copious statistical quantities (midrange, mean, 
median, standard deviation, etc., plus various quantiles, 
moments, and probability plot correlation coefficients).  
Then for a quick visual overview of the data set, a 
standard 4-plot analysis is produced, which consists of a 
run sequence plot (to check for outliers and for drift in 
the sample location and its variation), a lag plot (to 
check data randomness), a histogram (to view the data 
distribution shape), and a normal probability plot (which 
is a straight line if the data are normally distributed).  
CDFware next produces a bootstrap plot to find the best 
location parameter for the data (mean, median, or 
midrange), followed by a runs test and an 
autocorrelation plot to check randomness (i.e., a lack of 
spatial or temporal correlation within a sample set).  A 



two-iteration Tukey-Lambda probability plot correlation 
coefficient (PPCC) plot is generated next to indicate the 
best symmetrical distribution family that might fit the 
data.  To eliminate the simplest distribution cases first, 
CDFware then checks for a uniform distribution using a 
uniform probability plot fit criteria and for a normal 
distribution using the Anderson-Darling test.  Data 
variation drift is checked next using the Bartlett test for 
the normal case and the Levene test for nonnormal 
data.  Based on the answers to several of these tests, 
CDFware determines whether the sample is under 
�statistical control.�  The presence of outliers is checked 
next using Grubbs� test.  If the data were determined to 
be nearly uniform, then CDFware produces a relative 
histogram plot with a fitted uniform pdf, plus a uniform 
probability plot with a fitted line.  If the data were found 
to be approximately normal, then a relative histogram 
with fitted normal pdf plot is created along with a normal 
probability plot with fitted line.  If neither uniform nor 
normal, CDFware makes one last symmetric distribution 
check by creating logistic distribution PPCC and 
probability plots if the Tukey-Lambda shape parameter 
is less than 0.05. 
 By this point the sample data set has been 
determined to be asymmetrical.  If the skew is positive, 
CDFware currently tests for a best-fit from these ten 
right-skewed distributions: Weibull (extreme value 
distribution based on the minimum order statistic), 
lognormal, gamma, power normal, power lognormal, 
skewed normal, Frechet (type II extreme value 
distribution using the maximum order statistic), 
generalized extreme value, inverted Weibull, and chi-
squared.  If the data skew is negative, CDFware 
currently tests for a best-fit from two left-skewed 
extreme value distributions:  Weibull (based on the 
maximum order statistic) and Frechet (based on the 
minimum order statistic).  Two-iteration PPCC plots, the 
appropriate probability plot, and a relative histogram plot 
with a fitted distribution pdf are produced for each 
distribution.  CDFware then automatically compares the 
maximum PPCC values to determine the best 
distribution fit (currently selecting the distribution with 
the highest maximum PPCC value). The CDFware 
analysis finishes by producing a report summarizing the 
statistical findings and the chosen distribution pdf with 
parameters, plus a concise output data file for use as a 
source in building input files for other plotting packages. 
 Several underlying assumptions must be met in 
order for a univariate statistical model to be valid: 1) the 
sample data are uncorrelated with one another, 2) the 
random component has a fixed distribution, 3) the 
deterministic component consists of only a constant, 
and 4) the random component has fixed variation 
(NIST/SEMATECH 2003).  As described earlier, 
CDFware checks that these assumptions are satisfied 
and records its findings in a data set summary report. 
 
3. EXAMPLE RESULTS 
 
 Output from the 1.33 km-spaced nested grid of the 
Community Multiscale Air Quality (CMAQ) modeling 
system (Ching and Byun 1999) is being used during the 

development of the subgrid concentration variability 
methodology and the CDFware postprocessing 
package.  (Additional CMAQ information can be found 
at http://www.epa.gov/asmdnerl/models3/cmaq.html.)  
Any fine resolution model output could have been 
statistically analyzed, but our focus in a related research 
project is on creating a link between the CMAQ-
provided air toxics concentrations and HAPEM (Ching et 
al. 2004).  All CDFware results discussed here are 
derived from the 1.33 km grid ground-level pollutant 
concentration output of a CMAQ simulation of the 
Philadelphia, Pennsylvania, area for 14 July 1995. 
 
3.1 Sample Data from a CMAQ Case Study 
 
 Surface acetaldehyde (ALD2) mixing ratios for 
15:00 LST on 14 July 1995 are shown in Fig. 1 at two 
different grid resolutions. Figure 1a shows the mean 
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     FIG. 1.  Mean surface mixing ratio of acetaldehyde 
(ALD2) for 15:00 LST 14 July 1995 from a CMAQ 
simulation of the Philadelphia, PA, area shown at (a) 1.33 
km grid spacing and (b) 12 km grid spacing. Area coverage 
and color spectrum range are set to the same scale to 
facilitate comparison. 
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ALD2 mixing ratio taken directly from the CMAQ output 
at the finest nested grid of 1.33 km grid spacing.  There 
are 99×99 of the (1.33 km)2 cells in Fig. 1a, with the 
southwest corner located at 39.4667° N latitude and 
76.0147° W longitude, and the northeast corner at 
40.4424° N and 74.1507° W.  Figure 1b shows the 
mean ALD2 mixing ratio for 10×10 (12 km)2 grid cells 
derived from the averaging of 9×9 blocks of the 1.33 km 
output.  Scales for the area coverage and mixing ratio 
range were kept the same to facilitate comparison of 
Figs. 1a and 1b.  As expected, the details and extreme 
values (such as point sources and other �hot spots�) 
seen in Fig. 1a are lost in the averaging shown in Fig. 
1b.  Though present to varying degrees at all grid 
resolutions in Eulerian models, clearly the averaging 
inherent in relatively coarse grid regional air quality 
models often results in an inadequate representation of 
extreme concentrations needed for exposure models. 
 The pollutant subgrid concentration variability 
missing in Fig. 1b is illustrated by the ALD2 histograms 
of Fig. 2 for each (12 km)2 grid cell.  The histograms for 
12 km cells (I04, J02) and (I04, J04) reflect the 
presence of the bright red to pink ALD2 point sources 
seen in Fig. 1a.  Note the general variety of distribution 
shapes, with no obvious pattern to the layout.  Both 
spatially and temporally, this sort of distribution 
complexity exists, more or less, for the other 
investigated CMAQ pollutants such as carbon monoxide 
(CO), ozone (O3), nitric oxide (NO), nitrogen dioxide 
(NO2), and formaldehyde (FORM). 
 
3.2 CDFware Analysis of Acetaldehyde 
 
 In an attempt to sort out the complexity of Fig. 2, 
the CDFware distribution analysis program was applied 
to the 15:00 LST acetaldehyde mixing ratio data.  Each 
(12 km)2 grid cell, each consisting of a set of 81 
randomized �sample data� from the original 1.33 km 
grid, was analyzed according to the procedure 
described in section 2. 
 An example 4-plot analysis from CDFware for 12 
km cell (I08, J03) appears in Fig. 3.  A quick inspection 
of the four subplots reveals that the data are free from 
drift, random, have a positive skew, and are nonnormal.  
A 4-plot analysis is produced for each grid cell data set 
and provides a visual summary of the data set 
characteristics. 
 The Tukey-Lambda shape parameter λ for the 
15:00 LST ALD2 concentrations for each (12 km)2 grid 
cell is shown in Fig. 4.  The shape parameter provides 
guidance as to which family of symmetrical distributions 
the data may belong according to the following 
(NIST/SEMATECH 2003):  λ = −1 for an approximately 
Cauchy distribution, λ = 0 for exactly logistic, λ = 0.14 
for approximately normal, λ = 0.5 for a U-shaped 
distribution, and λ = 1 for an exactly uniform distribution.  
Tukey-Lambda shape parameters less than 0.14 
indicate increasingly heavy or long-tailed distributions as 
λ goes to -1, while shape parameters larger than 0.14 
indicate shorter-tailed distributions.  The two 12 km cells 
that contain the ALD2 point sources, (4, 2) and (4, 4), 

stand out as long-tailed distributions in Fig. 4 due to the 
interpretation of the sources as outliers.  Several cells, 
including the downtown Philadelphia cell at (5, 5), are 
shown to be approximately uniform  and generally agree 
with several of the corresponding histograms of Fig. 2.  
However, the downtown cell, for example, is actually 
bimodal.  This test shows that the Tukey-Lambda shape 
parameter loses value as a distribution family indicator 
when the data set is not unimodal nor symmetrical. 
 An example CDFware-generated PPCC plot set for 
the positively skewed ALD2 concentration distribution of 
cell (I08, J03) is shown in Fig. 5.  Of the ten distribution 
types tested against the data, this gamma distribution 
produced the closest fit as judged by its having the 
largest maximum PPCC value (0.995588 after two 
iterations) and supported by the reasonably good fit to 

     FIG. 3.  Example 4-plot analysis from CDFware for 
acetaldehyde at 15:00 LST 14 July 1995 for (12 km)2 cell 
(8, 3) from the CMAQ simulation. 
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   FIG. 4. Tukey-Lambda shape parameter for acetaldehyde 
for each (12 km)2 cell at 15:00 LST 14 July 1995. 



the straight line in the gamma probability plot.  The 
gamma probability density function curve is also seen 
as having a good fit to the relative histogram of the 
sample data. 
 Figure 6 shows the final best-choice distribution 
types (in no particular order) for the 15:00 LST subgrid 
acetaldehyde mixing ratios at 12 km grid spacing as 
determined by the CDFware subgrid concentration 
variability analysis package.  Quite a bit of distribution 
variety and no discernible pattern can be seen in these 
results.  The resulting number of cells for each 
distribution type in this case is: uniform 12, normal 13, 
Weibull for positive skew 15, lognormal 4, gamma 3, 
power normal 10, power lognormal 6, skewed normal 
13, Frechet for positive skew 6, generalized extreme 
value 3, inverted Weibull 2, chi-squared 1, Weibull for 
negative skew 10, and Frechet for negative skew 2. 
 For skewed distributions, CDFware currently 
chooses the best-fit distribution based solely on the 

maximum PPCC value.  In practice, there is usually not 
much difference between the maximum PPCC values of 
the top few choices for each data set.  For example, the 
gamma distribution shown earlier for 12 km cell (I08, 
J03) had a maximum PPCC value of 0.995588, but chi-
squared, lognormal, and Weibull distribution fits for the 
same cell yielded maximum PPCC values of 0.995585, 
0.995367, and 0.995044, respectively, meaning these 
are all nearly equally good fits to the data. 
 
3.3 Weibull-Only Analysis of Acetaldehyde 
 
 The seeming chaotic arrangement of distributions 
shown in Fig. 6 and the often small differences between 
distribution maximum PPCC values for a given cell 
motivated a subjective approach to the subgrid 
concentration distribution analysis.  Because the Weibull 
distribution accounted for the largest share (25%) of the 
CDFware-chosen distributions for the 15:00 LST ALD2, 
the assumption was made that a Weibull distribution 
could be successfully applied to the entire domain.  
Perhaps by choosing a single distribution model such as 
Weibull, patterns in the pdf parameters may emerge that 
will assist in the development of parameterizations for 
subgrid pollutant concentrations. 
 Figure 7 shows the relative histogram version of 
Fig. 2 for acetaldehyde, this time with the fitted Weibull 
pdf curves overlaid.  Some of the Weibull fits are quite 
good, such as for 12 km cells (I03, J08), (I05, J03), and 
(I10, J05).  Other Weibull pdf fits are not so good, such 
as for cells (I01, J04), (I02, J10), and (I06, J07).  In 
general, though, the Weibull distribution does a 
reasonable job of representing the extreme values 
present in some of these sample ALD2 data. 
 For each fitted distribution, in addition to the 
maximum PPCC value, CDFware determines all 
parameters needed to construct the probability density 
function.  Maps of these values for the 15:00 LST 
acetaldehyde Weibull-only analysis are shown in Fig. 8. 
 The goodness-of-fit for each Weibull distribution 
can be gauged by examining Fig. 8a.  Most maximum 
PPCC values are above 0.98, but as expected, a few 
(12 km)2 cells stand out as relatively poor Weibull fits, 
thus implying that a different distribution model would be 
more appropriate for these cells. 
 Figures 8b-d illustrate the individual parameters 
used in the general form of the Weibull distribution pdf 
(Bury 1999), shown in Eq. (1) for the minimum order 
statistic (for positive skew):  
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where λ is the shape parameter, µ is the location 
parameter and σ is the scale parameter.  The location 
parameter locates the model f on its measurement axis, 
which for a Weibull distribution is not the same as the 
mean for a normal distribution.  This fact can be verified 
by comparing Figs. 8c and 1b (even though the tile color 
ranges are different).  Likewise, the Weibull scale 
parameter is not the same as the standard deviation of

     FIG. 5.  Example probability plot correlation coefficient 
(PPCC) plot set from CDFware for acetaldehyde at 15:00 
LST 14 July 1995 for (12 km)2 cell (8, 3). 
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     FIG. 6.  Map of best-choice distribution type for each (12 
km)2 grid cell as determined by CDFware for acetaldehyde 
at 15:00 LST 14 July 1995 from the CMAQ simulation. 
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a normal distribution, though each denote the relative 
horizontal stretching or contracting of the distribution.
 The Weibull shape parameter values shown in Fig. 
8b reveal no particular pattern, but the 12 km cells 
containing the acetaldehyde point sources, cells (4, 2) 
and (4, 4), distinctly show low shape parameter 
magnitudes.  The Weibull location parameters of Fig. 8c 
display just a hint of the southwest-northeast structure 
of the ALD2 mixing ratio field of Fig. 1a.  And finally, the 
Weibull scale parameters in Fig. 8d have mostly 
randomly placed small values, except for the SW-NE 
�plume� seen starting from the downtown Philadelphia 
cell (5, 5) which has relatively large values of σ.  
Adapting these results into a new subgrid pollutant 
variability parameterization would be difficult. 
 
 

4. CONCLUSIONS 
 
 Results from CDFware analyses of the CMAQ 
model results for acetaldehyde (ALD2) at 15:00 LST on 
14 July 1995 from the Philadelphia case study were 
presented here and the current findings generally did 
not reveal any discernible pattern or order.  Other 
CMAQ pollutants have been analyzed with CDFware 
and have also yielded essentially inconclusive results.  
The CDFware distribution fitting works well and its 
results can still enhance the input stream to the human 
risk and exposure models, especially as pertains to the 
higher resolution urban census tract scales.  But the 
desire to utilize CDFware analyses results to develop 
parameterizations of subgrid pollutant variability for use 
in coarse grid regional air quality models remains 
unfulfilled for now. 
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     FIG. 8.  Weibull probability density function parameters generated by a special Weibull-only version of CDFware for 
acetaldehyde at 15:00 LST 14 July 1995 from the CMAQ Philadelphia study.  Shown are (a) the maximum probability plot 
correlation coefficient (PPCC) value, (b) the Weibull shape parameter λ, (c) the Weibull location parameter µ, and (d) the Weibull 
scale parameter σ  for each (12 km)2 grid cell. 



 This research is a work in progress and 
development continues on refining and improving the 
Concentration Distribution Function -ware (CDFware) 
subgrid pollutant concentration variability analysis 
program.  Desired CDFware improvements would 
include the ability to detect multimodal (particularly the 
relatively common bimodal) data distributions and to fit 
mixed multiple distributions, such as a mixture of two 
Weibull distributions in the bimodal case, to the data set.  
CDFware will also be applied to higher resolution output 
from neighborhood-scale models in order to determine 
whether more coherent parameter fields can be 
detected at the finer resolutions. 
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