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1 Introduction  
 
The Atmospheric InfraRed Sounder (AIRS) 
(Aumann et al. 2003) is the first of a new generation 
of high spectral resolution infrared sounder with 
2378 channels measuring outgoing radiance 
between 650 cm-1 and 2675 cm-1.   High spectral 
resolution in the infrared region allows for the 
derivation of atmospheric soundings of 
temperature, moisture, ozone and trace gases with 
higher accuracy and higher vertical resolution.  
Even though AIRS has more than 2000 channels, 
the information is not independent.  In fact, many of 
the channels are highly correlated.  However the 
use of highly correlated data also reduces the 
effects of instrumental noise.  Principal component 
analysis (PCA), also called eigenvector 
decomposition, is often used to approximate data 
vectors having many elements with a new set of 
data vectors having fewer elements, while retaining 
most of the variability and information of the original 
data.  The new data vectors are called principal 
component score  vectors, and because they 
consist of the components of the original data 
vector in an orthogonal coordinate system, the 
elements of a given principal component score 
vector are independent of each other (unlike the 
original spectrum).   
 
For  AIRS, PCA is used for   a)  data compression, 
b) reconstructing radiances with the properties of 
reduced noise, c) independent instrument noise 
estimation, d) quality control,  and e) deriving 
geophysical parameters. 
 
2 Principal Component Analysis 
 
Principal component analysis for high spectral 
resolution sounders is described by Huang and 
Antonelli (2001) and Goldberg et al. (2003). 
Elements of a principal component score vector are 
projections of the spectrum onto each of the 
orthogonal basis vectors, which are the 
eigenvectors (principal components) of the radiance 
covariance matrix.   The total number, n,  of  
eigenvectors is equal to the total number of 
channels.  However, it can be shown that a much  
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smaller set of k eigenvectors (< 100), ordered from 
largest to smallest eigenvalues, is sufficient to 
explain most of the variance in the original spectra.   
The covariance matrix is derived from an ensemble 
of AIRS normalized spectra, i.e. radiance divided by 
the instrument noise.    The matrix of eigenvectors, 
E, is related to the covariance matrix, S, by: 
 
                          S = E λET                                   (1) 
 
where S , E and λ are all dimensioned n x n, and  λ 
is a  diagonal matrix of eigenvalues.   The principal 
component scores vector p is computed from: 
 
                        p    =    ET r                                  (2)  
  
where r is the vector of centered (departure from 
the mean) normalized radiances. The next equation 
is used to reconstruct the radiances from a 
truncated set of k eigenvectors E* and a vector of 
principal component scores p*.  (The symbol * 
indicated that the matrix or the result of a matrix 
operation is due to truncated set of vectors). 
 
                         r* = E*p*                                    (3) 
 
 The normalized reconstructed radiance vector is r*,  
E* has dimension n x k, and the vector p* has 
length k.  To obtain the un-scaled radiance, one 
must add the ensemble mean normalized radiance 
used in generating the covariance matrix and 
multiply the sum by the noise used in constructing 
the normalized radiances  
 
The number of principal components needed to 
reproduce the signal in the original radiances is 
determined by examining the magnitude of the 
eigenvalues and examining the spatial correlation 
of the principal component scores. Since we are 
using normalized radiances, the square root of the 
eigenvalues can be interpreted as signal to noise.  
Principal component scores (PCS) can be thought 
of as superchannels since each one is a linear 
combination of all channels. The first score contains 
the largest signal to noise ratio, which as shown in 
Table 1 is very large. When the eigenvalues fall 
below unity, the noise has larger contribution than 
the signal.   Based on Table 1, this transition occurs 
near the 60th eigenvalue.   However when we 
examined the PCS spatial correlations, an 
additional 25 principal components are needed.  
Ideally the spatial correlation should be near zero, 
otherwise the PCs are not capturing all of the 
signal.   Note that the 85 PCs used in our AIRS 



processing system is based on a global ensemble 
of observations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1   Square root of the first 72 eigenvalues 
 
3   Applications 
 
a) Noise Filtering 
 
Because reconstructed radiances are derived from 
the principal components containing most of the 
signal as opposed to  noise, the reconstructed  
radiances are nearly noise-free.  The reconstructed 
radiances can be used in the retrieval process or 
directly assimilated.  Fig. 1 shows the AIRS 
instrument noise at scene brightness temperature, 
and the root mean square (rms) difference between 
reconstructed brightness temperatures, from 60 
principal component scores, and noise-free 
simulated brightness temperatures.  To compute 
these results, we simulated brightness 
temperatures from a global ensemble with and 
without expected instrument noise.  The 
reconstructed brightness temperatures are 
computed from the instrument noise-contaminated 
data.   The original noise curve in Fig. 1 is simply 
the rms error of the two datasets (noise and noise-
free).   The rms difference between the 
reconstructed brightness temperatures and the 
noise-free simulated brightness temperatures is 
extremely small in comparison to the instrument 
noise.  The reconstructed data are more similar to 
noise-free observations. Since the reconstructed 
rms error is very small, we can use the 
reconstructed data to estimate the noise.  This is 
done by simply computing the rms difference  
between the reconstructed brightness temperatures 
and the original noisy data.   The difference 
between the original noise curve in Fig. 1 and the  
noise estimate using PCA is shown in Fig. 2.  The 
difference is extremely small and we use this 
technique as an independent approach for 
estimating instrumental noise.  Furthermore, when 
we find an occasional large difference between 
reconstructed and the original radiances it is often 
due to a problem in the original radiances.  So PCA 
is also used for quality control.  Another advantage 
of using reconstructed radiances is that a reduced 
channel set can be used in a retrieval algorithm or 
in radiance assimilation with the benefits of using 

information from the entire spectrum, since each 
reconstructed radiance is a linear combination of all 
channels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1   Root mean square (rms) error of noise minus noise-free 
brightness temperatures (scene noise) and rms of reconstructed 
brightness temperatures from 60 principal component scores 
minus noise free brightness temperatures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2  Difference between the rms of reconstructed brightness 
temperatures from 60 principal component scores minus noise 
contaminated brightness temperature and the scene noise (Fig. 
1). 
 
b)  Data compression 
 
Instead of distributing 2378 AIRS channels, a data 
producer can distribute 85 PCS.  Thereby, reducing 
the amount of data to be distributed or archived by 
a factor of 30.    The user can reconstruct all or a 
subset of the channels. 
 
c)  Geophysical Retrievals using PC Regression 
 
Another application is the use of PC scores in least 
squares regression to derive geophysical retrievals. 
For AIRS, we use 85 principal component scores 
for predictors and solve for atmospheric 
temperature, moisture, ozone profiles and surface 
temperature and surface emissivity.  With 2000+ 
channels, many of the channels are similar to each 
other, making the covariance matrix nearly 
collinear.  A significant advantage for using 85 



principal component scores instead of all 2000+ 
channels is that the inverse of the predictor matrix 
is more stable and less collinear.  Another 
advantage is that the regression solution is 
computationally fast.  In matrix notation the form of 
the regression coefficients C, dimensioned m 
number of parameters by the k number of principal 
component scores, is 
 
                 C    =    XP*T(P*P*T )-1                   (5) 
 
where X is a training dependent predictand 
ensemble matrix, of dimension m by sample size s.  
P*, the training predictor ensemble matrix, is 
dimensioned k by S.  On independent data the 
m-dimensioned solution vector is obtained from the 
matrix multiplication of  C p* , where p* is the 
independent vector of principal component scores 
of length k.  
 
Retrieval rms errors (differences between the 
retrieval and collocated radiosondes)  based on the 
AIRS PC regression are shown in Fig. 3.    Also 
shown in this figure are retrieval errors from the 
NESDIS ATOVS system (Reale,. 2002).    The  
AIRS retrieval errors (dashed curve), including the 
systematic bias are significantly lower than ATOVS.   
The larger errors in the lower tropospheric 
temperature are probably due to uncertainties 
arising from collocation temporal and spatial 
differences. However, the difference between the 
ATOVS and AIRS retrieval remains large.   
Previous simulation studies have found that AIRS 
generally reduces the retrieval error by about 0.5K, 
and this appears to be holding for this radiosonde 
comparison.    For moisture, the retrieval errors are 
significantly smaller than ATOVS.   The large 
natural variability of water vapor combined with 
uncertainties in radiosonde-observed water vapor 
will prevent demonstrating 
the 10-15% accuracies often reported in simulated 
studies 
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Fig. 3: Temperature (in K, top)  and moisture (in %, bottom) RMS  
differences between the regression retrieval and the collocated 
radiosondes.   The  dashed curves are the AIRS errors,  NOAA 16 
errors are the solid curve 
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