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1. INTRODUCTION 
 
Difficulties in quantitative precipitation 

forecasting (QPF) are well known in the 
meteorological community.  QPF accuracy is 
dependent on many factors including the reliability 
of microphysics schemes to reasonably 
parameterize precipitation formation; model 
resolution; seasonal factors; and initial condition 
uncertainty (ICU).  The project discussed in this 
paper ultimately aims at improving the prediction 
of QPF by reducing the impact of ICU for short-
term regional forecasts by assimilating radiance 
data obtained from the Atmospheric Infrared 
Sounder (AIRS) using the variational method, or 
four dimensional variational data assimilation (4D-
Var). 

There have been various projects that have 
aimed at reducing the impact of ICU in QPF by 
utilizing various techniques.  Xu et al. (2001) 
attempted to do this by using a short-range 
ensemble forecasting technique, where the 
ensemble members were constructed using an 
adjoint model.  More ambitious projects include 
Kuo et al. (1993) where a Newtonian nudging 
technique was used to develop a method of 
assimilating remote sensing data of precipitable 
water fields to improve model initialization.  
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Kuo, et. al (1996) also sought to improve 
precipitation forecasts by assimilating precipitable 
water data obtained from a GPS satellite using a 
variational method.   

Variational data assimilation, as introduced by 
Le Dimet and Talagrand (1986) has many 
advantages over other data assimilation 
techniques.  The two most striking features is the 
method’s ability to assimilate indirect observations 
into a numerical model (such as satellite radiance 
data), and the ability of the model to continuously 
assimilate observational data when generating an 
optimal initial condition.  Using this method to 
assimilate indirect observations to improve short-
term QPF should help to reduce the impact of ICU 
and provide the model with an optimal initial 
analysis. 

On 4 May, 2002, NASA launched the Aqua 
satellite into sun-synchronous orbit 705.3 km 
above the earth’s surface.  Several state of the art 
visible, infrared, and microwave sensors were 
flown on Aqua, including the Atmospheric Infrared 
Sounder (AIRS) (Aumann, et al. 2003).  AIRS was 
built with the goal to provide atmospheric 
temperature soundings retrieved from the 
instrument’s radiance data with an accuracy of 1 K 
within 1 km layers.  The instrument senses 2378 
spectral channels simultaneously over a spectral 
range from 3.7 to 15.4 µm, collecting global 
observational data twice daily with a spatial 
resolution of 13.5 km.  It is believed that 
assimilating this data, via the variational method 
into a mesoscale model, will help improve short-
term QPF. 

Prior to any 4DVAR assimilation utilizing AIRS 
data, several tasks need to be performed.  First, a 
radiative transfer model must be selected that has 



the capability of simulating radiance values for a 
given domain for each of the AIRS spectral 
channels; second, the adjoint of this model must 
be developed and tested; third, any bias and/or 
outliers between the calculated and observed 
radiance fields must be identified; and lastly, an 
adjoint sensitivity study must be performed in 
order to ascertain which spectral channels will be 
most useful when attempting to improve the model 
QPF.   

In the following sections an assessment of the 
potential usefulness of AIRS data in attempting to 
improve QPF will be discussed.  In section 2, the 
AIRS radiative transfer algorithm (AIRS-RTA) will 
be introduced along with an overview of the 
observational data and the initial test case used 
for this assessment.  Section 3 will outline the 
results from a comparison of RTA-calculated 
radiances with AIRS observations, including 
identification of any bias and/or outliers and their 
possible sources.  Section 4 will include a brief 
discussion on the development of the AIRS-RTA 
adjoint model, along with an overview of the 
adjoint sensitivity analysis and its preliminary 
findings.  These topics will be followed by a 
summary and a discussion on the project’s future 
work. 
 
2. AIRS-RTA AND AIRS RADIANCE 

OBSERVATIONS 
 

2.1 AIRS Radiative Transfer Algorithm 
 
In order to assimilate any indirect observations, 

such as radiance data, an observation operator is 
required that is capable of mapping model-
produced parameters to the observation space 
and in the same form as the observations.  

The observation operator selected for this work 
is the Stand-alone AIRS Radiative Transfer 
Algorithm (SARTA).  SARTA was specifically 
designed for use with AIRS data and as such is 
capable of simulating radiance values for a 
specified domain at all 2378 AIRS spectral 
channels.  SARTA is computationally fast, having 
been designed to generate radiance values as a 
convolution of the AIRS spectral response 
functions (SRF) with monochromatic radiances, 
where the monochromatic radiances are 
calculated using parameterized transmittances 
and reflected downwelling radiation (Strow and 
Hannon, 2002).  The radiative transfer algorithm 
used by SARTA takes the following form: 

 
          ( )AIRS

i v iR R SRF v dv= ∫ ,                     (1)                                               

where Rv is the monochromatic radiance leaving 
the top of a non-scattering atmosphere, and 

( )iSRF v  is the AIRS spectral response function 
(SRF) for channel i.  The SRF for each channel is 
known, therefore, the monochromatic radiance is 
the term that needs to be calculated.  SARTA uses 
the following formula to calculate this radiance 
term: 
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SARTA incorporates four source terms in its 
radiative transfer equation:  (1) surface emission, 
(2) atmospheric emission, (3) downwelling 
atmospheric emission reflected by surface, and (4) 
reflected solar radiation) in its radiative transfer 
equation; and is evaluated using input data 
interpolated to 100 atmospheric layers (Strow and 
Hannon, 2002). 

 
2.2 AIRS Observations and Initial Test 

Case 
 
The radiance data collected by the AIRS 

instrument provides information on different 
atmospheric parameters and surface 
characteristics.  For example, within the spectral 
range of 650.33 cm-1 to 755.33 cm-1, there exist 
many CO2 sensing channels from which 
atmospheric temperature can be derived.  Most of 
the surface characteristics (surface skin 
temperature, etc.) are derived from the spectral 
range of 2394.03 cm-1 to 2664.14 cm-1 .  The 
majority of the atmospheric water vapor channels 
lie in the 1310.18 cm-1  to 1605.05 cm-1 spectral 
range (Pagano2 et al., 2002) 

In order to assess the usefulness of AIRS 
radiance data in a 4D-VAR assimilation scheme, it 
was necessary to select a simple test case for 
which simulated radiances can be compared to 
observational radiances obtained from AIRS.  The 
case selected for this project involves a strong, 
mid-level moisture gradient in association with a 
cold front over the southeastern United States on 
11 July, 2003.   

This case was selected due to its simplicity; 
there is no measurable precipitation associated 
with the system at the verification time selected 
(1800 UTC).  In addition to this, the existence of 
the mid-level moisture gradient provides an 
excellent measure as to how well the observations 
 



do in detecting the atmospheric water vapor, and 
also how accurately the mesoscale model and the 
radiative transfer model (RTM) perform in handling 
the atmospheric moisture.   

Figure 1 displays actual AIRS brightness 
temperature (BT) data for the southeastern region 
at 1800 UTC (spectral channel 1740 at 1513.83 
cm-1 ).  The AIRS observations show a distinct 
gradient in the BT field across this region (possibly 
the result of a mid-level moisture gradient). 

 

 
Figure 1--Simulated BT from AIRS observations at 18z 
11 July, 2003.  Spectral channel 1740 (1513.83 1/cm) 
shown. 

 
3. COMPARISON OF CALCULATED AND 

OBSERVED BRIGHTNESS 
TEMPERATURES  

 
3.1 Methodology 

 
In order to compare the observed BTs obtained 

from AIRS with those calculated by the AIRS-RTA, 
the RTM is linked to a mesoscale model and its 
data interpolated to the observation space.   

The model used in this study is the 
Pennsylvania State University / National Center for 
Atmospheric Research fifth-generation Mesoscale 
Model (MM5).  The MM5 is a limited-area non-
hydrostatic model which uses a finite-differencing 
scheme (Dudhia et al., 1993)  This model can be 
used to predict atmospheric motions on a variety 
of scales ranging from a few hundred meters to 
thousands of kilometers.  The latest version of the 
MM5 (version 3) is used in this project to produce 
forecasts of meteorological fields.  The MM5 has 
the ability to run with multiple nested grids 
(although only one grid is used here) as well as 
the capability to utilize a number of different 
physical parameterization schemes. 

Several alterations were made to the AIRS-
RTA in order for it to use MM5 fields as input.  
Once these changes were made and a translation 
subroutine installed, the AIRS-RTA was able to 
produce simulated radiances for a specified MM5 
domain.  In order to compare the simulated 
radiance values with the AIRS observations point-
by-point, the RTM-produced radiances are 
interpolated from the model space to the 
observation space using a simple linear 
interpolation scheme. 

Cloud contamination is a serious obstacle 
when dealing with infrared sounders and AIRS is 
no exception.  In order to deal with this problem, 
the MODIS cloud mask (produced with the EOS 
science team’s institutional algorithm) was 
obtained from the DAAC for each AIRS time 
period.  The MODIS cloud mask (MOD35) is 
available at 1km resolution over the AIRS swath 
for both day and night passes.  Although the 
quality of the MODIS cloud mask varied between 
day and night and land and ocean over the 
southeastern U.S. (Haines et al. 2004), its 
performance is generally quite good with greater 
than 80% of the cloud conditions being properly 
detected.  The MODIS cloud data was interpolated 
to the AIRS swath and used to determine the 
percent cloud cover for each AIRS field of view (on 
average about 225 MODIS points were used for 
each AIRS footprint).  Additionally, the MODIS 
cloud top pressure (MOD06) values were used to 
obtain a mean cloud top pressure for each AIRS 
footprint using the cloud mask information.  This 
approach allowed us to consider three situational 
parameters for the selection of “cloud-free” AIRS 
data for each footprint:  1) a cloud/no cloud 
determination (33% AIRS pixel covered by cloud 
threshold), 2) a varying threshold (0-100 
percentage), and 3) channel selection based upon 
cloud height (cloud top pressure).  The first and 
simplest parameter indicates if a grid point is 
either 100% clear or not.  Understandably, this 
field leaves very few viable grid points from which 
to do an analysis.  The second parameter 
indicates the percentage of the grid point that 
contains clouds.  The last parameter, and the one 
used for this study, indicates the vertical level of 
the highest cloud top over the specified grid point.  
This parameter allows one to increase the amount 
of AIRS data (channels) used in the cloudy 
regions by using only those whose weighting 
functions peak above the clouds.  This parameter 
works because each spectral channel senses 
radiances from varying vertical levels in the 
atmosphere.  The weighting function for AIRS 
channel 309 (738.48 cm-1), for instance, peaks 



 
Figure 2--Brightness temperature comparison for AIRS spectral channel 309 (738.48 1/cm) 

 
near the 700-mb level.  Therefore, if the highest 
cloud top for a grid point is at the 900-mb level, 
then this channel should be relatively unaffected 
and the grid point is utilized for that channel.  

As previously stated, the MM5 model is used to 
produce input data for the AIRS-RTA.  For this 
analysis, a 36-hr forecast was produced by the 
MM5 and was initialized at 00:00 UTC 11 July, 
2003.  The grid used is 150 x 150 x 35 and has a 
20-km resolution.  The physics utilized include the 
Dudhia explicit moisture scheme, the Grell 
cumulus convection scheme, and the Blackadar 
PBL.  Three time-levels were investigated for this 
study, two nighttime views and one daytime view.  
Each MM5 time-level was matched as closely as 
possible to the actual observation time.  The time 
periods used include 06:00 UTC 11 July, 18:00 
UTC 11 July, and 06:00 UTC 12 July.  These each 
correspond to the observation times of 08:00 UTC 
11 July, 19:00 UTC 11 July, and 07:00 UTC 12 
July, respectively. 

A subset of the 2378 AIRS spectral channels 
has been selected by the AIRS science team for 
their geophysical parameter retrievals.  A subset 
10 of the 275 AIRS team channels is used in this 
study to investigate any possible bias and/or 
outliers present in either the model or 
observational data.  In no way should this study be 
seen as representative performance of all 2378 
channels; a future study will investigate the bias 
and RMS errors for all channels produced by the 
RTM. 

Table 1 displays the channels selected for this 
analysis along with each channel’s absorbing gas, 
wave number, and level of maximum sensitivity 
(see section 4). 
 
Table 1: 
Channel ID Wavenumber (1/cm) Primary Absorbing Gas Level of Max Sensitivity

309 738.48 CO2 700 mb
375 759.58 CO2 800 mb
843 937.91 H2O (window channel) 960 mb
1142 1074.48 H2O 850 mb
1740 1513.83 H2O 330 mb
1793 1563.01 H2O 300 mb
1852 1605.05 H2O 400 mb
2123 2401.91 CO2 990 mb
2197 2500.60 H2O (window channel) 1000 mb
2377 2664.14 H2O (window channel) 1000 mb

 
3.2 Results 

 
The following scatterplots represent the 

comparison between observed and calculated BTs 
over the specified MM5 domain.  The x-axis 
represents the observed BT values while the y-
axis represents the calculated BT values.  All three 
time-levels are included in the scatterplots (black 
dots indicate nighttime data, red dots represent 
the daytime data set).   

 
a. Channel 309 (738.48 cm-1) 
 

As seen in this scatterplot (figure 2), the AIRS-
RTA seems to do an adequate job of simulating 
the BT values across the domain for this channel.  
Channel 309 is a midlevel CO2 absorbing channel,  



 
Figure 3--Brightness temperature comparison for AIRS spectral channel 843 (937.91 1/cm) 

 

 
Figure 4--Brightness temperature comparison for AIRS spectral channel 1740 (1513.83 1/cm) 

 
 
 
 
 
 



which is good for atmospheric temperature 
retrievals.  There exists a rather pronounced cold 
bias in the model simulation, which does not seem 
time-dependent; and many of the model's BTs are 
colder than the observations by 4-7 degrees.  The 
slope of the best-fit line is near unity, indicating a 
relatively constant bias with temperature (over the 
region) for this channel, but the bias must be 
removed before any assimilation is to be done.  
The data points which are far-removed from the 
best-fit line are outliers and likely caused by some 
residual cloud contamination. 
 
b. Channel 843 (937.91cm-1) 

 
AIRS channel 843 (figure 3) is a surface 

channel used by the AIRS team to generate 
surface property and water content retrievals.  For 
this and other surface channels, the cloud mask 
filtered out any grid point where any amount of 
cloud was detected.  For this channel, almost no 
bias is detected, and very little spread is seen in 
the data, however, the results for individual days 
show significant variation.  The AIRS observations 
show a larger range of temperatures than does the 
RTA, which is probably do to the lack of variation 
in the MM5 surface temperature fields. 
 
c. Channels  1740 (1513.83 cm-1) 

 
Channels 1740, figure 4, is located in a 

spectral band of channels that are highly sensitive 
to water vapor, and as such the scatterplot shows 
greater disagreement than the previous plots.  
This is understandable since most numerical 
models have a difficult time with accurately 
simulating the atmospheric moisture profile.  There 
exists a definite cold-bias in these results and a 
fair amount of spread in the data from the best-fit 
line.  

 
Overall, the AIRS-RTA and MM5 appear to do 

an adequate job of simulating the BTs over the 
specified domain in comparison to the AIRS 
observations for these 3 channels.  The outliers 
have been identified in further study as being the 
result of residual cloud contamination and will be 
removed before any 4D-Var assimilation.  There 
appears to be a substantial cold bias in most of 
the channels investigated here.  This bias is likely 
caused by errors in the MM5 input fields, and 
could be a result of the model producing too much 
moisture over the specified domain.   

Figures 5a and 5b display the MM5-produced 
relative humidity fields for 12:00 UTC 11 July, 
2003 at two pressure levels (500 mb and 850 mb).  

Figures 5c and 5d display the same fields at the 
same pressure levels as the MM5 figures but for 
radiosonde data from 12:00 UTC 11 July, 2003.  
Notice the difference in the magnitude in the RH 
fields between the observations and the MM5 
model results, especially for the 850 mb level.  It 
appears, from these results, that the MM5 is 
producing more near-surface moisture than what 
actually existed at this time.  Also, the MM5 seems 
to be under predicting the moisture values at 500; 
this may provide some explanation for the cold 
bias in AIRS channel 309, and certainly in the 
water vapor channel shown here.  

Further study is planned in this area to 
determine the root cause of the bias seen in these 
channels.  In addition to this, a full investigation of 
all 2378 AIRS spectral channels will be done to 
find the RMS errors and the bias of each channel 
when comparing AIRS-RTA BTs to that obtained 
from the AIRS observations.  This study will be 
used to obtain bias-correction coefficients which 
will be applied to any future 4D-Var assimilation. 

 
4. DEVELOPMENT OF THE AIRS-RTA 

ADJOINT MODEL AND PRELIMINARY 
SENSITIVITY ANALYSIS RESULTS 

 
4.1 Development of the AIRS-RTA Adjoint 

Model 
 

In order to conduct any 4D-Var assimilation, it 
is necessary to derive the adjoint of the nonlinear 
AIRS-RTA.  The actual process of deriving this 
model is actually two-fold; first, the tangent linear 
(TGL) model of the AIRS-RTA is found by taking 
the first order Taylor expansion around the 
nonlinear AIRS-RTA solution.  The adjoint (ADJ) 
model is then derived as the transpose of the 
tangent linear model.   

The nonlinear AIRS-RTA can be expressed by 
the following equation: 

 
( )R H= x .                               (3) 

                            
Where H is the observation operator, x is the state 
vector, and R is the solution (in this case, the 
radiance values).  The TGL-RTM can therefore be 
expressed as the following: 

 
( )Rδ δ=H x x .                             (4)      

                            

Where H∂=
∂

H
x

 is the tangent linear of the 

observation operator, δx  is the perturbation to the  



 
 

Figure 5--Relative humidity plots, all plots made from data valid at 12z 11 July, 2003:  fig 5a displays RH from MM5 
data at 500-mb level; fig 5b displays RH from MM5 data at 850-mb level; fig 5c displays RH from observations at 500-

mb level; and fig 5d displays RH from observations at 850-mb level. 

 
 
state vector, and Rδ  is the perturbed radiance 
value.  To derive the TGL-RTM, the nonlinear 
model code must be differentiated line-by-line with 
respect to the input variables.   

Once the TGL-RTM has been derived and 
validated, the ADJ-RTM can be found.  The ADJ-
RTM is simply the transpose of the TGL-RTM (if 
the TGL-RTM contains calculations involving 
complex numbers, the complex conjugate must 
first be found then the transpose operation can be 
done).  The ADJ-RTM can be expressed as the 
following: 

 

( )* * *Rδ δ=x H x .                            (5)  
                            

Where all the terms superscripted with a * are 
adjoint variables.   *H  is the adjoint operator 
which acts on the forcing term *Rδ  in order to 
produce the adjoint control variable *δx  which is 
equal to the gradient of R with respect to the input 
variable x.   

The computer code for the ADJ-RTM is 
developed by finding the complex conjugate and 
the transpose of the TGL-RTM.  To do this, the 
output variable of radiance becomes the input 



variable and the sequence of code operations is 
reversed for the adjoint variables; in other words, 
the last calculation occurs first and vice versa.  
However, the basic state (which is needed by the 
ADJ-RTM) must be calculated as in the TGL-RTM 
and in the same sequence.  Once the correctness 
of the adjoint code has been verified, the model 
can be used for numerous operations such as 4D-
Var assimilation and adjoint sensitivity 
experiments. 
 
4.2 Preliminary Results from the Adjoint 

Sensitivity Analysis 
 
It is vitally important to ascertain the relative 

sensitivity of the AIRS-RTA response to the model 
input parameters before conducting any 4D-Var 
experiments.  This is because a sensitivity 
analysis is an efficient channel selection tool.  With 
AIRS data consisting of 2378 spectral channels, 
many of which are redundant, it is important to 
par-down the number of sensitive channels to be 
included in data assimilation.  Adjoint sensitivity 
provides an excellent means of checking if the 
numerical results produced by the AIRS-RTA are 
physically realistic (Amerault and Zou, 2003).   

The most widely used method of sensitivity 
analysis consist of running a particular numerical 
model once, save the output as a control run, 
perturb one input parameter, run the model again, 
then compare the two model solutions.  If the 
model solution changed significantly compared to 
the control run, then the response is said to be 
sensitive to that particular input parameter.  In the 
case of a radiative transfer model, such as the 
AIRS-RTA, one may be interested in the effects 
that mixing ratio may have on radiance calculation.  
Using the method just described, however, is quite 
inefficient when considering that the AIRS-RTA 
has several input parameters and over 2000 
spectral channels.  Fortunately, the ADJ-RTM 
model provides an excellent tool to conduct a far 
more efficient sensitivity study. 

The ADJ-RTM model is used to calculate the 
sensitivity of the model-simulated response to 
each input parameter (atmospheric temperature, 
perturbation pressure, mixing ratio, and ground 
temperature) with only one integration of the 
adjoint model.  This clearly saves time and 
resources over the previously described traditional 
method.  A detailed mathematical description of 
relative sensitivity calculation using the ADJ-RTM 
model is provided below. 

 
 
 

a. Formulation 
 
The response function is defined as  
 

( ) ( )J J Rα α α= =x                         (6) 
                         

where x is the vector which contains the values for 
surface and atmospheric parameters and ( )R α  is 
the radiance value of the αth channel.  The 
sensitivity of the response function Jα , with 
respect to the vector x is defined as 

( ) ( )ˆT TsensJ Jα α δ δ= ∇ =x x x                (7)  
                         

where x̂  is the result of applying the adjoint RTM 

onto a vector Jα

α
∂
∂

 which consists of a unit value 

for one channel and zero for all other channels.  If 
there is a variation only in the lth component of x, 
then lδx  represents the vector of variation such 
that  

 

( )0,..., ,...,0
Tl lxδ δ=x                      (8) 

                         
and the sensitivity can be written as 

( )ˆ Tsens l lJα δ− = x x .  Zou, et. al. (1993) defined the 
non-dimensional relative sensitivity as   
 

ˆsens l l l l
l

l

J x x xS
J Jx

α
α

α α

δ−  
= = 

 
                      (9)  

                         
where ˆ lx  is the gradient of the cost function Jα  
with respect to the lth parameter of x.   

The magnitude of the relative sensitivity 
signifies the importance of each input parameter 
for each spectral channel.  Plotting the relative 
sensitivities provides a way to judge which 
variable (and at which spectral channel) the 
radiance values are most sensitive for a given 
response function. 

 
b. Numerical Results 

 
The sensitivity study was conducted for 

radiances at all channels at two separate grid 
points from the input MM5 data run.  Figure 6 
displays the brightness temperatures for channel 
1740 (1513.83 cm-1) at 18:00 UTC 11 July, 2003 
as produced by the RTM.  Point A and point B 
indicate the grid point locations where the two 
sensitivity analyses were conducted.   

 



 
Figure 6--AIRS observations for channel 1740 over 
MM5 domain region.  Points A and B indicate grid points 
where sensitivity experiments were conducted. 

 
Two sensitivity experiments were done to 

ensure that the sensitivity values do not change 
much from one grid point to the next.  Both grid 
points are in cloud-free environments (as defined 
by the MM5 cloud-water data field).  A discussion 
of the results from the sensitivity experiment 
conducted at point A is presented in this section. 

The sign of the relative sensitivities are 
important and must be discussed briefly.  There 
are four input parameters to the AIRS-RTA that 
have been tested here.  These are atmospheric 
temperature, perturbation pressure, mixing ratio, 
and ground temperature.  Both the atmospheric 
temperature and ground temperature plots have 
mainly positive relative sensitivities.  This indicates 
that as the temperature increases, the radiance 
value will increase as well (as is expected).  It is 
still unclear why there are some areas of negative 
relative sensitivity in the atmospheric temperature 
results.  For the mixing ratio and perturbation 
pressure plots, the largest sensitivities tend to be 
negative, indicating an increase of perturbation 
pressure or mixing ratio (water content) would 
decrease the radiance value in those regions.  For 
mixing ratio, this result is straightforward.  An 
increase in the mid-level water content would likely 
result in a radiance value decrease since the 
emission would primarily be from the mid-levels 
with less surface contribution. However, the 
results corresponding to perturbation pressure 
may not be as straightforward. 

Perturbation pressure is the term given to the 
combination of dynamic pressure and buoyancy 
pressure.  Dynamic pressure is associated with 
gradients in the wind field whereas buoyancy 
pressure is associated with the vertical derivative 

of buoyancy.  This term does not have a 
significant impact on the radiance values 
calculated by the AIRS-RTA as the perturbation 
pressure term is used primarily to calculate the 
model pressure levels for input to the RTM; 
however, perturbation pressure is used as one of 
the adjoint model’s control variables and is 
therefore included in this study for completeness. 
The largest magnitude in sensitivities are in the 
temperature fields, most notably in the ground 
temperature results (some values as high as 
12.0).  This is consistent with the current 
understanding of radiative transfer (Strow and 
Hannon, 2002; Liou, 1992), and this result 
suggests that the RTM is doing an adequate job in 
simulating the atmospheric radiance values at 
each spectral channel. 

Figures 7 through 9 display three examples 
from the relative sensitivity study for the RTM input 
parameters at grid point A; the first plot displays a 
range used in atmospheric temperature 
soundings; the second plot displays a range used 
for water vapor soundings; and the third plot 
displays the sensitivity of radiance to surface 
parameters.  The relative sensitivities in the first 
two plots are represented by the color contours; 
the x-axis represents the spectral channel wave 
numbers; the y-axis is the vertical level in millibars.  
At the bottom of each figure is a line graph of the 
brightness temperature (average of four 
surrounding grid points) provided for additional 
insight in deciphering the sensitivity data.  

Also included in these figures are identifiers 
indicating the channels selected by the AIRS team 
for their retrievals.  Each identifier is color-coded 
to indicate which parameter (surface temperature 
[green], atmospheric temperature [blue], water 
vapor [yellow], ozone [maroon]) retrieval the 
specified channel is used for.  This allows for a 
measure of consistency between the AIRS team 
selection and the sensitivity results provided here. 

Figure 7 displays the relative sensitivity of 
radiance to the input parameters over the spectral 
range 706.99 to 767.89 cm-1  (channels 201 to 
400).  Figure 7a displays the relative sensitivity of 
radiance to T.  In this range one can see that the 
maximum sensitivity values are now stretching 
closer to the model surface (also indicated by the 
brightness temperature plot which has the BT 
rising from 230 K to nearly 300 K).  The AIRS 
team does an adequate job of channel selection 
through this range, the majority of which are used 
for T retrievals, except for channel 369 (757.57 
cm-1 ) which is used for  ground temperature, Tg, 
retrievals.  There are some spectral channels 
which exhibit interesting features in the sensitivity  



 
Figure 7—Sensitivity plots for spectral channels 201-400 (707.00 to 767.89 cm-1).  Figure 7a displays the 

sensitivity of radiance to atmospheric temperature (color contours); 7b for mixing ratio; 7c for perturbation pressure.  
Vertical levels (in mb) on y-axis; spectral range (in cm-1) on x-axis.  Sensitivity magnitudes indicated by color bars on 
right.  Colored lines at top indicate AIRS-team selected channels (blue for CO2 atmospheric temperature channels, 

green for surface parameters, yellow for water vapor channels, and maroon for ozone channels).  Line plot at bottom 
indicates average BT over domain point for specified channels. 

 
 
 
 
 



 
Figure 8—Sensitivity plots, as in figure 7, for spectral channels 1601-1864 (1412.32 to 1603.61 cm-1).   

 
 
 
 
 
 
 
 



patterns, most notably for channels from 729.58 
cm-1 to 731.01 cm-1 and channels near  
743.50 cm-1.  There appears to be distinct 
maximum sensitivity regions at these channels 
which the AIRS team decided not to use, for 
reasons that are as of yet unknown.  The AIRS 
team does not select any of these channels for 
their moisture retrievals.  This decision is 
consistent with figure 7b (sensitivity to q) that, 
while displaying nice patterns of relative 
sensitivity, shows the magnitudes of the sensitivity 
are relatively low (maximum value of only near -
0.014). 

Figure 8 shows relative sensitivity of radiance 
to the input parameters for the spectral range of 
1412.32 cm-1 to 1613.89 cm-1 (channels 1601 to 
1864).  This range is primarily used by the AIRS 
team for water vapor retrievals; this is supported 
by the data in figure 8b which shows that radiance 
has high sensitivity to water vapor in this spectral 
range.  The sensitivity to T in this range is also 
high, but none of these channels have been 
selected by the AIRS team for atmospheric 
temperature retrievals likely due to moisture 
interference.  The AIRS team does a fine job in 
selecting channels for moisture retrievals based 
on the findings in this study, as many of the 
selected channels correspond to spikes in the 
sensitivity field. 

Figure 9 shows the relative sensitivity of 
radiance to the ground temperature parameter.  
This plot is of the model response sensitivity to the 
ground temperature parameter, and is therefore 
displayed as a 2-D plot; relative sensitivity values 
on the y-axis, channel ID number on the x-axis.  
This parameter had the highest relative sensitivity 
values out of the four parameters tested, with 
maximum values approaching 11.0. 

Examining figure 9, one can see three distinct 
spectral regions where the relative sensitivity to 
the ground temperature is highest:  between 
channels 375 (759.58 cm-1) to 1300 (1236.03 cm-

1), just before channel 1900 (2213.67 cm-1), and 
again from channels 2100 to 2378 (2379.43 to 
2665.28 cm-1), with the last range having the 
highest sensitivities.  Overall, the AIRS team does 
a good job in selecting channels from the proper 
ranges.  Their team selected 10 channels between 
375 and 1300 (759.57 cm-1 to 1000.11 cm-1); 9 
channels between 1000 and 1300 (1000.11 cm-1 
to 1236.032 cm-1); 7 channels between 1865 to 
1876 (2181.49 cm-1 to 2191.53 cm-1); and 26 
channels after channel 2115 (2394.06 cm-1).  The 
decision to select the majority of surface channels 
from after channel 2100 is supported by this study 

as that spectral region contains the highest 
relative sensitivity values for this parameter. 

It is not believed that any additional channels 
will need to be selected other than those already 
chosen by the AIRS team for this parameter.  
However, these results will be studied closely 
when choosing channels for the 4D-Var 
experiments. 
 
5. SUMMARY AND CONCLUSIONS 

 
As shown in this discussion, the AIRS-RTA 

does an adequate job of simulating the BTs over 
the domain for the initial test case.  The model is 
fast and efficient making for relatively smooth 
integrations for the adjoint model, which is its most 
desirable feature.  Some bias exists in the AIRS-
RTA simulations, mainly a cold bias for daytime 
and a slight warm bias at night.  The nighttime 
warm bias is likely due to the input data fields and 
the MM5’s inability to correctly resolve the diurnal 
cycle.  The daytime bias, however, appears to be 
the result of the MM5 over-predicting the surface 
moisture content.  A further study of all 2378 
channels will be conducted in the near future to 
derive correction coefficients to remove the bias 
before any data assimilation. 

The ADJ-RTM has shown to be correct, not 
only from the correctness checks done previously, 
but also from the results of the adjoint sensitivity 

 

 
Figure 9—Radiance sensitivity to ground temperature.  
Sensitivity values on y-axis; channel wave number on x-
axis.  Note there is a spectral gap between 1613.89 and 
2181.52 cm-1 (channels 1864 and 1865). 
 
study.  Several features of this study demonstrate 
the accuracy of the analysis and the success of 
the ADJ-RTM in analyzing the relative sensitivity 
values to the four parameters tested:  (1) the 
agreement between the sensitivity plots and the 



brightness temperature analysis suggest that the 
RTM is functioning correctly and that the radiative 
transfer process is simulated accurately; (2) the 
channels selected by the AIRS team for their 
geophysical parameter retrievals are in good 
agreement with the sensitivity analysis of each 
parameter tested here.   

If large discrepancies existed between the 
channels of highest sensitivity and those channels 
chosen by the AIRS team, one would have to 
assume that the sensitivity analysis is in error.  It is 
not expected that the channels chosen by the 
AIRS team would agree completely with the 
analysis generated by the ADJ-RTM, on the 
contrary, a small amount of disagreement is 
expected.  However, the overall agreement 
between the two methods suggests that the 
sensitivity analysis shown here is accurate and 
that the ADJ-RTM is functioning normally. 

The sensitivity analysis shown in this paper can 
be used to select several sets of channels to be 
used during 4D-Var assimilation.  These 
experiments will determine which channels 
perform best during each weather regime 
(summertime precipitation, wintertime snow, etc.), 
in conjunction with a future sensitivity analysis that 
will link the model parameters (mixing ratio, 
ground and air temperature) to the MM5 model 
response (in this case, precipitation). 

Further study is required, however, before this 
sensitivity analysis can be considered complete.  
First, it must be determined which channels were 
excluded from the AIRS team channel selection 
and why (signal noise, etc.), before any channel 
selection can be done for this project.  In addition 
to this, many atmospheric gas profiles (methane, 
ozone, etc.) are held as fixed gas amounts in the 
AIRS-RTA; the impact on the channel sensitivity to 
each input parameter must be determined when 
these gas amounts are changed.  Doing so will aid 
in selecting the most useful and least troublesome 
spectral channels for any data assimilation 
experiments. 
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