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1. INTRODUCTION 

Grasslands are located in the arid and semi-arid 
climate area and are one of the most widespread 
terrestrial ecosystems in the world. These regions are 
also sensitive to human- and/or climate-induced land 
degradation (desertification) mostly due to less water 
resources. According to model predictions (IPCC, 
2001), it is likely that in most of arid and semi-arid 
areas water deficits will increase. In addition, 
interannual variability in above-ground net primary 
productivity (ANPP) in grasslands is greater and more 
strongly correlated with precipitation than any other 
ecosystems (Knapp and Smith, 2001). Improved 
knowledge of large-scale climatic and environmental 
factors regulating local water balance and plant 
growth associated with carbon fluxes is required to 
deal with issues of sustainability of the grassland 
ecosystems that will respond to the possible future 
climate change. 

The short- and long-term productivity has 
potential to be intimately linked to the local water 
balance. In mid-latitude semi-arid grasslands, water is 
the primary factor limiting plant growth (Suzuki et al., 
2000, Knapp and Smith, 2001). Water resources for 
plant growth in grasslands of the Central Eurasia 
comprise snow-melt water in the spring and rainfall 
during the growing season (Suzuki et al., 2000; Suzuki 
et al., 2003).  

The Kazakhstan steppe is well-known as one of 
the largest granary in the Eurasian Continent. Soil 
fertility in this region is rich and can potentially 
produce high yield of crops. However, since 
hydro-climatic conditions are generally severe due to 
a small amount of precipitation with frequent 
occurrence of drought, water deficit is a major abiotic 
stress in this region. Therefore, crops are cultivated 
using not only rainfall during the growing season, but 

Central Eurasian semiarid region, snow 
disappearance timing is early to middle April (Shinoda 
et al., 2001) and the effect of snowmelt water on soil 
moisture was clearly observed during May (Shinoda, 
2001). This timing coincides with the period when 
evapotranspiration exceeds precipitation likely due to 
the wet soil conditions (Ueda et al., 2003). This 
quasi-periodic water availability determines similar 
patterns of water use and limitations of growth among 
dominant species of natural grass and crops of the 
region. In the other words, ecosystem water balances 
in this grassland easily change due to altered 
precipitation and evaporation patterns. In particular, 
the occurrence of a drought has severe, negative 
effects not only on short-term plant production, but 
also on longer-term production (Briggs and Knapp, 
1995; Haddad et al., 2002) and plant diversity (Tilman 
and El Haddi, 1992). 

In order to evalu

spring snowmelt water (Morgounv., et al, 2001). In the 

ate the impact of hydro-climatic 
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2. METHOD 

Meteorological observation and biomass 
mea

ed using the 
Bow

itions on the local surface energy balance and 
plant growth on seasonal and annual time scales, 
inter-seasonal measurements of the surface energy 
balance components and plant biomass were 
conducted since 2002 at natural grassland in north 
part of Kazakhstan. We focused on the responses of 
evapotranspiration and above- and below-ground 
biomasses to soil moisture content, during the 
development of a summer dry period. 

surements were carried out from 1 May to 1 
November, 2002 at the natural grassland in Shortandy 
(51.3 N, 71.2 E, 427 m) in the northern part of 
Republic of Kazakhstan. The surface conditions of the 
site are mostly flat. This area is entirely cultivated for 
wheat, sugar beets and a variety of other crops 
because of the highly productive soil.  

Surface heat budget was observ
en ratio-energy balance (BREB) method, 

installing a Bowen ratio system. Other supporting 
climatic variables, such as wind speed and direction, 
precipitation, incoming and reflected short-wave 
radiation, photosynthetically active radiation (PAR), 
and volumetric soil moisture content were also 
measured.  
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ass in the grassland, 4 sites of 1x1 m quadrate 
were set in 2 week interval from early May to 
mid-October, 2002. In the first site, plant coverage, 
height, above-ground alive and dead biomasses 
separately measured in each species. In addition, 
below-ground biomass down to 20 cm depth was also 
measured. In other three sites, measurements of 
coverage, height, above-ground alive and dead 
biomasses were identified between dominant grass 
(Stipa Capillata) and other species.  
 

ound alive and dead 
biomasses were identified between dominant grass 
(Stipa Capillata) and other species.  
 

Figure 1. Seasonal variation in 10-day 
plant-available volumetric soil moisture (the 
difference from wilting point) for four layers of 
0-10 cm, 10-20cm, 20-50cm, and 50-100cm at 
a wheat field of the Kazakhstan Research 
Institute of Grain Farming. The values were 
averaged over the period from 1972 to 1985. 
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sture in layers from the surface to 1m depth. Soil 

moisture in all layers reached maximum in spring (late 
April), and in shallow layer (up to 20cm depth) 
gradually decreased until late June. After July, soil 
moisture in all layers simultaneously and abruptly 
decreased and reached minimum in early September. 
This drying period is recognized as summer dry 
season. Then, soil moisture in the shallow layer (20cm 
depth) came to be refilled with autumn rainfall. 
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ng are defined here as rainfall in previous autumn 
(Waut), snowmelt water (Wsnow), and rainfall between 
snowmelt and the beginning of plant growth (Wspr). 
Waut and Wspr are total rain amounts during autumn 
and spring, respectively, when pentad air temperature 
is between 0°C and 5°C. Wsnow is maximum snow 
water equivalent during a month from snow melt 
pentad. 
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Waut and Wsnow reaches 40 % of contribution and Waut 
is most correlated. Four years exceeding 150 mm in 
total were caused due to large precipitation at one 
pentad or large amount of snow. That is, some part of 
water was likely removed as run off. 
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Figure 2. Interannual variation in (a) 
precipitation in autumn, (b) snow water 
equivalent, (c) precipitation in spring, and the 
sum of three resources and spring volumetric 
soil moisture. 

ro-climatic factors (daily precipitation and soil 
moisture) showed characteristic transition of water 
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moisture at the depth of 20 cm (Fig. 3a) exhibits a 
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precipitation (Fig. 3b). That is, wet conditions with 
more than 30% in volumetric content lasted from May 
to mid-July, whereas a gradual decrease began after 
mid-July and finally reached to the value less than 
15% in late August. This seasonal pattern is similar to 
those for central Eurasian stations in the similar 
latitude (Shinoda, 2001). From May to August, net 
radiation (Rn) had a high value exceeding 15 MJ m-2 
day-1, and the partition of latent and sensible heat 
fluxes also varied corresponding with variations in the 
soil moisture and precipitation (Fig. 3c). During the 
wet season, the latent heat flux (lE) was the main 
partitioned components, frequently exceeding the half 
of the Rn. A switch in major energy component from lE 
to H dominated occurred in association with a soil 
moisture reduction after mid-July. 

A decrease in soil moisture co
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porative fraction lE/Rn. The evaporative fraction 

ranged from 0.4 to 0.8 when there was abundant soil 
moisture during the wet season. In contrast, when soil 
moisture reduced during the early stage of the 
summer dry period, the evaporative fraction (around 
0.4) remained nearly constant. These conditions 
indicate that evaporative water was effectively 
supplied by soil moisture. Soil moisture had already 
stored and kept since the snowmelt season and 
mitigated the reduction of evaporation in accordance 
with progressing summer dry season at this site. 
Subsequently, soil moisture decreased to less than 
20% during peak stage of the dry period, 
corresponding with abrupt decrease in the evaporative 
fraction to 0.1. 
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Figure 3. Seasonal variations in (a) volumetric 
soil water content at the 20 cm depth, (b) daily 
precipitation, and (c) the components of 
surface energy balance; net radiation (green
line), sensible heat (red line), latent heat (blue
line), and ground heat (brown line). Wfc and 
Wwp respectively mean reference values of 
field capacity (35.6%) and wilting point (17.8%) 
measured at wheat field by Kazakhstan 
Research Institute of Grain Farming. 
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ween seasonally accumulated evapotranspiration 
and precipitation (Fig. 4). During May, 
evapotranspiration was active and equivalent to 
equilibrium evaporation, whereas the precipitation 
could not satisfy the evapotranspiration. The result 
showed that deficit in water balance between 
evapotranspiration and precipitation reached 40 mm 
during May and finally 93 mm on late August. 
According to Hunt et al. (2002), evapotranspiration 
was equivalent to 93% of precipitation over the 
summer at tussock grassland in New Zealand. Wever 
et al. (2002) also showed that the cumulative 
evapotranspiration balanced with cumulative 
precipitation based on a multiyear observation. 
According to seasonal course of soil moisture profile, 
soil moisture within the near-surface layers was 
substantially reduced before dry season in conjunction 
with plant growth. Thus, remarkable characteristic in 
Kazakh steppe is that the soil moisture in deeper 
layers compensated the deficit during summer dry 
period.  
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Figure 4. Cumulative precipitation (green line), 
evaporation (E, red line), and equilibrium 
evaporation (Eeq, blue line) during the 
observational period. Pre+θ (black line) 
denotes the sum of cumulative precipitation 
and soil moisture reduction in the top 20 cm 
layer of a dense root system. The average θ in 
the layer was assumed to be the value for 20 
cm depth. 



characteristic seasonal variations due to the 
occurrence of the summer dry period (Fig. 5). 
Add

somewhat stable 
(0.4

bove- and below-ground biomasses (Fig. 6). The 
grow

itional indices of plant growth, namely PAR albedo 
and vegetation height, are also shown. As measured 
as NDVI (normalized difference vegetation index), the 
PAR albedo also indicates a phenological change in 
vegetation activity. PAR albedo also indicates a 
phenological change in vegetation activity. PAR 
albedo decreased rapidly and reached to the 
minimum value (7%) at early June (Fig. 5a). Since the 
vegetation cover is high (70% of the surface) at the 
site, PAR albedo, that is, greenness of the surface 
showed a quick response to simultaneous sprouting of 
plants. Above-ground alive biomass consistently 
increased until the beginning of the dry period. Dead 
fraction of the above-ground biomass inversely 
decreased. During the summer dry period, alive 
biomass exhibited a gradual decrease, and dead 
biomass turned to increase. After mid-September, 
increasing trend of dead biomass indicated a 
transition to the senescence. The peak of vegetation 
height showed a large delay comparing with 
greenness and biomass variations. 

During the wet season, active plant growth 
produced high transpiration. Subsequently, 
evaporative fraction (lE/Rn) was 
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), until soil moisture reduced to the wilting point 
during the early stage of the dry period. The mature 
plant was likely to tap deeper sources of soil moisture 
during the early stage of the drought. After the 
reduction of soil moisture, the transpiration was 
substantially weakened. Thus, the abrupt reduction in 
transpiration during the peak stage of the dry period 
implied changes in physiological response of both 
above- and below-ground structure to the very dry 
soil. 

Consequently, it appeared that the response to 
the soil moisture variation was quite different between 
the a
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th ratio of above-ground alive biomass is 
positively correlated with soil moisture content (Fig. 
6a), while the growth ratio naturally depends on the 
different phenological stages of growth and 
senescence. In contrast, the below-ground biomass 
temporally decreased during the summer dry period, 
while it increased again as the dry conditions 
progressed (Fig. 6b). The growth ratio of 
above-ground alive biomass is positively correlated 
with soil moisture content. In contrast, the below 
ground biomass did not show a significant correlation 
with soil moisture, whereas it grew even under the 
summer dry conditions. In brief, it implies that during 
dry period, the assimilation of plants could not sustain 
above-ground alive biomass, but a major portion of 
the assimilation was allocated to the below-ground 
biomass. 
 

Figure 6. Relationship between soil moisture 
content and growth ratio (g m-2day-1) of (a) 
above ground alive biomass and (b) below 
ground biomass 
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balance and plan
ored during the growing season of 2002. In this 

year there was a less precipitation period from 
mid-July to mid-August. Plant growth measured as 
PAR albedo and above-ground alive biomass was 
enhanced, being associated with high soil moisture 
content (from May to mid-July). After mid-July, soil 
moisture rapidly decreased, and the grasses turned to 
be withered. The evaporative fraction (lE/Rn) was high 
(exceeding 60%) during the wet season (from May to 
mid-July), while it reached to the minimum level (20%) 
as the soil moisture was reduced. Taking the high 
vegetation cover (exceeding 70%) and abundant dead 
biomass into account, most part of the evaporative 
water comprised transpiration through the dominant 
grasses.  

The present study demonstrated the strong 
influence of soil moisture on the growth of natural 
grassland in the Kazakhstan steppe. Soil moisture 
added due to the spring snowmelt was used for 
evapotranspiration, compensating the lack in 
precipitation during the summer. Interannual soil 
moisture anomalies at the initial stage of the growing 
season, due to the combined contribution of autumn 
precipitation, snowmelt water, and spring precipitation, 
should be related to the plant growth during each 
phenological stage of the grassland. In addition to the 
soil moisture variability, interannual frequency and 
intensity of summer drought may cause not only water 
stress on plant growth but also hydro-climatic 
feedback through evaporation processes over the 
grassland. The feedback on the atmosphere should 
be examined through the analyses of the large-scale 
atmospheric moisture budget (Ueda et al., 2003). 
Although observation of carbon dioxide flux was not 
performed, our observational evidence of water 
balance and plant growth, which are closely related to 
the carbon cycle, is believed to fill the gap of our 
knowledge of ecosystem dynamics in the Central 
Eurasia where observational investigations have been 
rare. 
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