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1. INTRODUCTION

To provide a long-term global basis of
precipitation information, satellite passive
microwave observations have been widely used
in the past decades to estimate surface rain rate.
Among various approaches, some algorithms
have invoked Bayes theorem to retrieve a single
instantaneous rain rate and vertical hydrometeor
profiles (Evans et al., 1995; Olson et al., 1996;
Kummerow et al., 1996; Bauer et al., 2001).
Bayes theorem offers a rigorous theoretical
framework for retrieval algorithms, however, up
to now, we are unaware of any algorithm that
fully exploits Bayes theorem to provide a
continuous posterior probability distribution
function (PDF) of rain rate.

We present a new Bayesian algorithm for rain
rate retrieval over the ocean in this paper. A
unique property of this new algorithm is that the
result of the algorithm is not a single "best" rain
rate but rather a complete posterior PDF, which
is potentially beneficial to data assimilation
applications. The other key element of the
algorithm is the characterization of relationship
between microwave radiance and surface rain
rate, which depends on both the physical and
statistical properties of rainfall, as well as the
beam-filling effects. Since actual match-up data
from microwave and rainfall measurements or
detailed model simulations do not exist in a
sufficient quantity, we rely on simulated data
derived from high-resolution radar composites,
and explicit functional models to facilitate our
algorithm.
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2. BASIS OF ALGORITHM

This new Bayesian algorithm retrieves
surface rain rate primarily from the Tropical
Rainfall Measuring Mission (TRMM) Microwave
Imager (TMI) measurements. Due to the
ambiguity of rain rate retrieval from microwave
radiance, we used the attenuation index P
(Petty, 1994) to construct our algorithm. The
attenuation indices at the TMI channels of 10.65,
19.35, and 37.00 GHz are hereafter denoted as
P.o, P19, @and P54, respectively.

2.1 Theoretical Framework

Bayes theorem states that given the data P
(e.g., microwave observations), the distribution
of the parameters R (e.g., rain rate) is
proportional to the conditional likelihood times
the prior distribution:

n(RIP)= f(PIR) (R) :

[£(PIR)-n(R)-dr
f(PIR) is a conditional probability density function
that expresses statistical and physical
information about the relationship between P
and R. w(R) describes our prior knowledge of
rain rate. The interactions of the physical and
statistic conditional and the prior probability
distribution determines the so-called posterior
distribution, t(RIP), the new PDF of rain rate R
in light of the observations P. Normally, the
effect of P is to reduce the spread of n(RIP)
relative to n(R); and the degree of reduction is a
measure of the information content of P.

In this study, the distribution of P at a given
rain rate is approached successively:

F(PIR)= f(Pg, Py, Py | R)
=f(P37 |R)f(P}9 |P37’R)f(Plo |P19’P37’R)-



Each conditional PDF was modeled by explicit
functions. For example, the conditional PDF of
P4, at a given rain rate was characterized by

Ry o= o] -5y | @
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where a is a constant and Py, is in the range
between 0 and a. u; and 65 are functions of rain
rate and determined by fitting to the data. In
addition, the prior distribution of rain rate is
parameterized by a lognormal function. Once
the conditional and prior likelihoods are
specified, the complete posterior PDF can be
computed by equation (1).

2.2 Radar-Radiative Simulations

The specifications of those parameters in
equation (2) and (3) rely on the training datasets
that provide sufficient and appropriate physical
and statistical dependency of microwave signal
on precipitation rate. In an attempt to account
for the inhomogeneity of rain clouds, we used
high-resolution NWS WSR-88D composite
reflectivity data to include realistically spatial
precipitation structures. These reflectivity data
have an hourly temporal resolution and a spatial
resolution of 1km. Surface rain rate for each
radar pixel was modeled by the Marshall-Palmer
Z-R equation. The simulated rain cloud field
was then applied into a simplified plane-parallel
radiative transfer model to compute the
attenuation index field.

To ensure the representativeness of the radar-
radiative simulations, figure 1 depicts the
comparisons of the multichannel relationships
between the model-simulated and TMI-observed
attenuation index fields. Surprisingly, the 3-D
structure of the attenuation index from radar
simulations demonstrates a great similarity to
the actual TMI observations in both locations
and orientation of the 2-D slices. Theoretically,
in a homogeneous case of rain cloud, a unique
non-linear relationship in P is expected.
However, in reality, due to various beam-fillings
effects, P scatters in 3-D space and its
distribution forms a cloud on the 2-D contours,
as shown in both observations and simulations.

3. Results

3.1 Complete Posterior PDF

Figure 2 demonstrates examples of the derived
posterior PDFs of rain rate at given microwave
attenuation index vectors. These posterior
distributions of rain rate have a single maximum
over the entire range, showing how the algorithm
modifies the prior rain rate distribution after
microwave data are seen. Based on these
continuous probability distributions, the statistical
properties of retrieved rain rates, such as the
mean and deviation, can be easily defined.

3.2 Comparisons with PR and GPROF

We used four verification measures to
quantify statistical differences between the
retrieved rain rate and the measurements from
TRMM Precipitation Radar (PR). The validation
measurements include the bias, the root-mean-
square error, and the correlation coefficient, and
the Heidke Skill Score (HSS). We also
compared our retrieval with that of the Goddard
Profiling algorithm (GPROF). Since PR and
GPORF provide single-pixel rain rates only, we
used two common estimates to represent the
"best" retrieved rain rate: the mean value
(MEAN), and the maximum likelihood estimate
(MLE). These two estimates are hereafter
denoted as the Bayesian-MEAN and the
Bayesian-MLE, respectively.

Since validation metrics are highly context
sensitive, depending on the characteristics of the
validation dataset as well as the performance of
the algorithm, validation statistics cannot easily
be interpreted in isolation but rather should be
used as a basis for comparing different
algorithms applied to the identical validation
dataset. Therefore, we selected several TMI-PR
match-up datasets for various precipitation
systems for the validation. Those datasets
include a typhoon case with TMI orbit number
336, twelve cases over the ocean from Bauer et
al. (2001), 88 heavy and widespread rain events
in 1998, and randomly-selected 118 orbit files in
April 1998.

Table 1 summarizes the calculated bias, the
root-mean-squared error, and the correlation
coefficient for each validation dataset. The
performance of our Bayesian algorithm is found
to be comparable to that of the GPROF, while
our algorithm has an added advantage of
posterior rain rate PDFs.



In order to obtain a direct sense of how
different the retrieval from each algorithm
behaves, PR interpolated and algorithm-
retrieved rain rate are mapped for the typhoon
case (figure 3). Qualitatively, rain maps exhibit
that these two algorithms are able to retrieve the
eye, two separate rain bands, and the overall
cyclonic structure of the typhoon. Quantitatively,
the retrieval from the new algorithm has a similar
magnitude of rain rates to the PR data and
GPROF retrievals. However, the Bayesian-MLE
retrieved rain rates demonstrate noticeable
underestimations of rainfall rate, and thus show
a negative bias in table 1.

4. Conclusions

This paper has presented a new Bayesian
rain rate retrieval algorithm and applied this
algorithm to real TMI data over the ocean.
Validations against PR rain rates have indicated
that the performance of our new algorithm is
comparable to the Goddard Profiling algorithm in
terms of commonly used verification metrics,
while our new algorithm has an additional
advantage of providing a complete continuous
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Contours of the number of pixels based on TMI data (the first row) and radar-radiative

simulations (the second row). Contours are logarithmically spaced; actual value is 10* where x is the
contour label. x is plotted for values of [0.5, 1, 2, 3, 4, 5].



Table 1. Summary of the bias, root-mean-squared error (rms), and the correlation coefficient for
GPROF and the Bayesian algorithm against each validation dataset. The unit of the bias and rms is
mm/hr.

Orbit 336 Bauer’s case Heavy widespread Apr. 1998 random
Algorithm Bias RMS Corr Bias RMS Corr Bias RMS Corr Bias RMS Corr
GPROF -022 268 088 -022 164 076 -0.15 408 0.75 -0.21 1.18 0.78

BAYE.-MEAN 0.00 2.89 085 008 184 071 130 5.03 068 003 1.26 0.78
BAYE.-MLE -1.04 3.75 0.85 -029 180 0.74 -0.19 449 0.69 -0.01 121 0.75
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Figure 2. Examples of derived posterior rain rate distributions at some given P. The three numbers in
parentheses represent the observation vector P = (P, P1q, P37).
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Figure 3. Maps of PR interpolated rain rate with 15-km resolution, and retrieved surface rain rate from
GPROF, Bayesian-MEAN, and Bayesian-MLE for TRMM/TMI orbit 336.



