Richard L. Snyder¹* and Simon Eching^{2†}

¹University of California, Atmospheric Science, Davis, California, ²California Department of Water Resources, Office of Water Use Efficiency, Sacramento, California

1. INTRODUCTION

Irrigation controllers are now widely used to manage landscape irrigation; however, scientifically based information on when to apply water and how much to apply is limited. In California, the landscape industry is huge and there is increased competition among water users. Consequently, managing irrigations to optimize efficient water use is critically important to stretch existing water supplies. Therefore, the MS Excel program LIMP.XLS was written to help landscape professionals and homeowners to calculate ET_o rates, determine landscape coefficient (K_L) values, estimate landscape evapotranspiration (ET_L) and determine irrigation schedules. This program not only helps practitioners but it also clarifies what horticulturalists need to research to help to improve urban irrigation management.

Evapotranspiration from landscape vegetation is estimated by using a regional measure of evaporative demand (e.g., reference evapotranspiration or ET_o), a microclimate coefficient (K_m) to adjust the ET_o for the "local" microclimate, a vegetation coefficient (K_v) that accounts for the difference in ET between well watered vegetation and the local ET_o , a density coefficient (K_d) that adjusts the ET estimate for plant density, a stress coefficient (K_s) that adjusts for reductions in ET due to water stress and an evaporation coefficient (K_{θ}) that defines a baseline coefficient value. Initially, the coefficient (K_w) to estimate ET of a well-watered vegetated cover is estimated as:

$$K_{w} = K_{m} \times K_{v} \times K_{d} \tag{1}$$

Then K_w is multiplied by a stress coefficient (K_s) to adjust for reductions in *ET* below that of well-watered vegetation. However, the evaporation coefficient serves as a baseline, so the landscape coefficient is calculated as:

$$K_l = K_w \times K_s > K_e \,. \tag{2}$$

Then the landscape evapotranspiration (ET_i) for the vegetation in that location is calculated as:

$$ET_{l} = ET_{o} \times K_{l}.$$
 (3)

2. MICROCLIMATE COEFFICIENT

In the "Weather" worksheet (Fig. 1), the upper table is used to estimate regional daily ET_o rates by month and to enter the coefficients used to calculate landscape $ET(ET_i)$. The lower table (Fig. 1) is used to † The views expressed are those of the author, not the State

input weather data representing the microclimate of the irrigation site to develop monthly microclimate correction factors to estimate the "Local" ET_o rates. Either daily mean ET_o rates or weather data are input to estimate "Regional" ET_o rates in the upper table. Then the LIMP uses a smooth curve fitting technique to estimate daily ET_o rates during the year from the monthly data. Weather inputs can include the daily mean (1) solar radiation (MJ m⁻² d⁻¹), air temperature (°C), wind speed (m s⁻¹), and dew point temperature (°C). The program calculates ET_o using the Penman-Monteith (PM) equation (Monteith, 1965) as presented in the United Nations FAO Irrigation and Drainage Paper (FAO 56) by Allen et al. (1998). If only temperature data are input, then the Hargreaves-Samani (1982) equation is used.

Figure 1. Climate data input worksheet for microclimate, vegetation, density, stress and evaporation coefficient factors.

Monthly climate data representing the "Local" site are input in the lower table of the Weather worksheet and ET_o is calculated using the PM or HS equations. The ratio of "local" over "regional" ET_o is computed and displayed in the right-hand column of the lower table. This ratio represents a monthly calibration for microclimate. While the microclimate (K_m) factors are shown in the lower table, they are only used by the program if they are copied to the right-hand column of the upper table using "Copy – Paste Special – Values". A smooth curve fitting procedure is used to estimate daily K_m values for the year. A sample plot of daily K_m using data from Figure 1 is shown in Figure 2. If no

^{*}*Corresponding author address*: Richard L. Snyder, Atmospheric Science, Univ. of California, Davis, CA 95616-8627; email: <u>rlsnyder@ucdavis.edu</u>.

values are input into the right-hand column of the upper table, the default value of $K_m = 1.0$ is used.

Figure 2. Plot of microclimate coefficient (K_m) versus date from data input into Figure 1.

3. VEGETATION COEFFICIENT

The vegetation coefficient (K_{ν}) is input into the "Weather" worksheet to adjust ET for plant canopy differences from ET_o (i.e., the ET of 0.12 m tall, coolseason grass). The K_{ν} coefficient represents wellwatered vegetation with a full canopy. The K_{v} accounts for morphological and physiological differences between the vegetation and the reference surface (ET_{o}) . For example, cool-season turfgrass is shorter than the 0.12 m tall, cool-season grass represented by ETo, so turfgrass ET_l is commonly estimated using $K_v \approx 0.80$. The K_v accounts for differences in net radiation, turbulence due to surface roughness, and canopy resistance relative to ETo. It is assumed that the plant physiology changes little during the year, so one value is used for K_v all year. The K_v value is input near the top right-hand side of the Weather worksheet (Fig. 1).

4. DENSITY COEFFICIENT

Sparse canopies have lower *ET* than dense canopies of the same vegetation and a density coefficient (K_d) is needed for the adjustment. Since there is no known universal correction for landscape vegetation, the following correction for immature deciduous orchards (Fig. 3) is used to estimate K_d .

$$K_d = \sin\left(\frac{C_G}{70}\frac{\pi}{2}\right) \tag{4}$$

where C_G is the percentage of ground covered by green growing vegetation. It is assumed that this relationship accounts for differences in light interception by canopies with cover less than 70 %. For canopies with more than 70 % cover, $K_d = 1.0$. The percentage ground cover is input by month in the upper table of the weather worksheet, the monthly K_d values are calculated and curve fitting is used to estimate the daily K_d values. If the ground cover cells are left blank, the default value $K_d =$ 1.0 is used. The K_d value is multiplied by the vegetation coefficient (K_V) to estimate the landscape coefficient (K_V) that accounts for plant density and vegetation differences from the local (i.e., microclimate corrected) ET_o rate. For example, Figure 4 shows $K_v \times K_d$ for the data from Figure 1.

Figure 3. Plot of the density (K_d) correction or fraction of maximum ET_l versus ground cover (C_G) percentage.

Figure 4. Plot of the product of the vegetation and density coefficient factors from data entered in Figure 1.

5. STRESS COEFFICIENT

Monthly stress coefficient (K_s) values are input into the upper table of the Weather worksheet (Fig. 1). A coefficient of $K_s = 0$ would force $ET_l = 0$ and a $K_s = 1.0$ implies no reduction in ET₁ due to water stress. After entering the monthly data, daily K_s values are computed for the entire year using a curve fitting technique. In older literature, it was common to talk about water use differences between vegetation and a "species" coefficient was used to estimate the vegetation ET from ET_{o} . However, in LIMP, the vegetation coefficient (K_{v}) is used to estimate the ET of vegetation at the maximum ET rate and the K_s coefficient is used to estimate the ET when the vegetation is stressed. For example, warmseason turfgrass has ET rates at about 75% of coolseason turfgrass during the summer but the ET rate is near zero during the winter when the grass is dormant. Therefore, reasonable estimates of the stress coefficient (Ks) by month were input into the "Weather" worksheet (Fig. 1) and the daily values were estimated and plotted (Fig. 5). Then, the daily landscape coefficient values for

a warm-season turfgrass would be calculated as $K_l = K_v \times K_d \times K_s$.

Figure 5. Plot of the daily stress coefficient based on data from Figure 1.

6. EVAPORATION COEFFICIENT

Bare soil evaporation is estimated for each day of the year using daily ETo estimates and the number-ofrainy-days per month (NRD), which are input into the "Weather" worksheet (Fig. 1). The NRD is used to estimate the rainfall frequency for each month and the results are used with ETo to estimate bare soil evaporation (E_s) using a 2-stage model. A plot of the evaporation coefficient estimates as a function of ET_{α} rate and rainfall frequency (days) is shown in Figure 6. The evaporation coefficient model is explained in Snyder et al. (2000). Then the estimated soil evaporation (E_s) is used to calculate a daily mean $K_e = E_s/ET_o$ value for bare soil for each month. Curve fitting is used to estimate daily K_e values over the year (Fig. 7). The K_l values are calculated using Eqs. 1 and 2, but the values must be greater than or equal to K_e (Fig. 7).

Figure 6. Evaporation (K_{e}) coefficient as a function of ET_o rate and wetting frequency.

Figure 7. Plot of the landscape coefficient (K_i) and evaporation (bare soil) coefficient (K_e) based on data from Figure 1.

7. OUTPUT & SCHEDULING

Daily values from each of the coefficients are plotted in the charts Km_plot, Kd_plot, Ks_plot and Kl_plot and are listed in worksheets Km, Kd, KvKd, Ks, Ke and Kl. The landscape (K_i) and baseline K_e coefficients are plotted in Figure 7. The daily landscape coefficient is calculated using Eqs. 1 and 2 and ET_i is calculated using Eq. 3. The ET_o and ET_i rates are plotted in the chart ET (Fig. 8) and the cumulative ET_o and ET_i are plotted in the chart CET (Fig. 9).

Figure 8. Plot of daily ET_o and ET_1 using the data from Figure 1.

Figure 9. Plot of cumulative ET_o and ET_l using the data from Figure 1.

The OUTPUT worksheet (Fig. 10) contains a row of all coefficient and *ET* calculations for each day of the year. The LIMP program also supplies information for irrigation scheduling in the worksheet RT (Fig. 11). Daily sprinkler runtimes needed to replace the ET_I losses and account for application efficiency are displayed. The application rate and efficiency are input at the top of the worksheet and the runtime minutes to efficiently irrigate are displayed in the table. When the application area is input, the total runtime hours and application amount for the year are displayed at the top of the table.

Figure 10. Sample of the first 27 days of the Output worksheet using data from Figure 1.

Figure 11. Sample the RT worksheet using data from Figure 1.

The CRT worksheet (Fig. 11) shows the cumulative runtime minutes to replace ET_i losses during the year. If any character is input in the small cell immediately left of a cumulative value, the cumulative runtime is reset to zero on that date and the runtime will accumulate until the end of the year. If one knows the maximum runtime possible to avoid runoff, entering characters on dates with that runtime or less will provide a schedule during the year.

	Yuba City		Cumulative Run Time (minutes)								2004		
		En	ter a cl	haract	er to th	ne left (of a rui	ntime t	o irriga	ate			
Day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nev	Dec	
	5	144	331	532	749	1146	1621	2147	2629	2977	3241	3453	
	9	150	338	537	759	1161	1637	2164	2643	2985	3249	3460	
	14	155	345	542	769	1176	1654	2181	2657	2994	3256	3467	
	18	160	353	547	780	1191	1671	2197	2671	3003	3264	3473	
	23	166	360	553	791	1206	1688	2214	2684	3011	3272	3480	
	27	172	368	558	802	1221	1704	2230	2698	3020	3279	3487	
	32	177	375	563	813	1236	1721	2246	2712	3029	3287	3493	
	36	183	382	569	825	1251	1738	2263	2725	3037	3294	3500	
	40	189	389	575	836	1267	1755	2279	2738	3046	3301	3506	
	44	196	397	581	848	1282	1772	2295	2751	3055	3309	3513	
	49	202	404	587	860	1297	1789	2311	2764	3064	3316	3519	
	53	208	411	593	872	1313	1806	2327	2777	3072	3323	3525	
	57	214	418	600	885	1329	1823	2343	2789	3081	3330	3531	
	61	221	425	606	897	1345	1840	2359	2802	3090	3337	3538	
	66	227	432	613	910	1361	1858	2374	2814	3099	3344	3544	
	70	200	438	620	923	1377	1875	2390	2826	3108	3351	3550	
	74	240	445	627	936	1393	1892	2405	2838	3117	3358	3556	
	78	246	452	635	949	1409	1909	2421	2849	3126	3365	3562	
	83	253	458	642	963	1425	1926	2436	2860	3134	3371	3567	
	87	260	464	650	976	1441	1943	2452	2871	3143	3378	3573	
	92	267	471	658	990	1457	1960	2467	2882	3152	3385	3579	
	96	273	477	666	1003	1473	1978	2482	2893	3160	3392	3584	
	101	280	482	674	1017	1490	1995	2497	2903	3168	3399	3590	
	105	287	488	683	1031	1506	2012	2512	2913	3177	3406	3595	
	110	295	494	691	1045	1522	2029	2527	2923	3185	3413	3600	
	115	302	500	700	1059	1538	2046	2542	2933	3193	3419	3605	
	119	309	505	710	1074	1555	2063	2557	2942	3201	3426	3610	
	124	316	511	719	1088	1571	2080	2571	2951	3209	3433	3615	
	129	323	516	729	1102	1588	2097	2586	2960	3217	3440	3620	
30	134		521	738	1117	1604	2114	2600	2968	3225	3447	3625	
	139		527		1131		2131	2614		3233	2.541	3629	

Figure 11. Sample of the CRT worksheet using data from Figure 1.

The worksheet KI_Mult (Fig. 12) is used to input the K_l values for up to 20 watering zones.

landscape coefficients entered for the first two zones.

To input the K_l values, create the K_l values for the vegetation of interest using the Weather worksheet and then copy the daily K_l column from the OUTPUT worksheet to the appropriate column in K1_Mult. When a column of K_l values is copied to the worksheet, a column of runtime values is created in the RT_Mult worksheet (Fig. 13). Then the application rate and application efficiency are input at the tops of the columns in the RT_Mult worksheet. Assuming little or no runoff, the distribution uniformity can be used to estimate the application efficiency. The runtime needed

to replace daily water losses on each day of the year by zone is displayed under the application efficiency.

Figure 13. Sample RT_Mult worksheet using the K_l values from the KI_Mult worksheet (Fig. 12). Values in the table are daily minutes of runtime required to apply a mean depth to the low quarter equal to the soil water depletion estimated using evapotranspiration.

The CRT_Mult worksheet (Fig. 14) provides the corresponding cumulative runtime requirements for each day of the year for each of the 20 zones. Entering any character in the blue column to the left of the table will zero the accumulation on the corresponding date and the runtimes will begin to accumulate again on the following day.

Figure 14. Sample CRT_Mult worksheet using data from the RT_Mult worksheet (Fig. 13). Values in the table are cumulative minutes of runtime required to apply a mean depth to the low quarter equal to the soil water depletion estimated using evapotranspiration.

8. UPDATING WITH CURRENT ET_o RATES

The LIMP program can determine runtimes needed for irrigation of urban landscape vegetation using daily ET_o calculated from monthly climate data. However, one can also input the current ET_o data into the ETo worksheet (Fig. 15), which is located to the right of the Weather worksheet. To change ET_o values, click on the cell to the left of where data are to be changed and then enter the current ET_o value.

/ut	ba City			Reference ET (ETo) in mm d ⁻¹								2004		
Click on the cell to the left to update an ETo rate														
ay i	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
	0.90	0.99	1.90	3.43	4.51	5.59	6.83	6.81	5.79	4.39	2.43	1.33		
	0.89	1.01	1.95	3.48	4.54	5.64	6.86	6.79	5.75	4.00	2.36	1.02		
	0.87	1.03	2.00	3.53	4.56	5.69	6.88	6.76	5.72	4.28	2.30	1.31		
	0.86	1.05	2.05	3.57	4.59	5.74	6.90	6.73	5.68	4.22	2.24	1.30		
	0.84	1.07	2.10	3.62	4.61	5.80	6.93	6.71	5.64	4.17	2.17	1.23		
	0.83	1.09	2.15	3.67	4.63	5.85	6.95	6.68	5.60	4.11	2.11	1.28		
7	0.82	1.11	2.20	3.71	4,66	5,90	6.96	6.65	5,56	4.06	2.05	1.26		
	0.82	1.14	2.25	3.76	4.68	5.96	6.98	6.62	5.53	4.01	1.99	1.25		
	0.81	1.16	2.30	3.80	4.71	6.01	7.00	6.60	5.49	3,96	1.93	1.24		
a	0.81	1.19	2.36	3.84	4.73	6.07	7.01	6.57	5.45	3.90	1.87	1.23		
1	0.81	1.21	2.41	3.89	4.76	6.13	7.02	6.54	5.41	3.85	1.82	1.22		
2	0.81	1.24	2.47	3.93	4.79	6.18	7.03	6.51	5,36	3,80	1.76	1.21		
3	0.81	1.27	2.53	3.97	4.81	6.24	7.04	6.49	5.32	3.76	1.70	1.20		
4	0.81	1.30	2.59	4.01	4.84	6.30	7.04	6.46	5.28	3.71	1.65	1.19		
s	0.81	1.33	2.64	4.05	4.87	6.36	7.05	6.43	5.24	3.66	1.59	1.17		
8	0.81	1.36	2.71	4.08	4.90	6,42	7.05	6.41	5.19	3.61	1.57	1.16		
7	0.82	1.39	2.75	4.12	4.94	6.45	7.05	6.37	5.14	3,53	1.55	1.14		
•	0.82	1.43	2.79	4.15	4.97	6.47	7.05	6.32	5.09	3.45	1.53	1.13		
a	0.83	1.46	2.83	4.18	5.01	6.50	7.04	6.28	5.03	3,37	1.51	1.11		
•	0.84	1.50	2.87	4.22	5.05	6.53	7.03	6.24	4.98	3.29	1.50	1.09		
1	0.84	1.53	2.92	4.25	5.09	6.56	7.02	6.20	4.93	3.22	1.48	1.08		
2	0.85	1.57	2.96	4.28	5.13	6.59	7.01	6.16	4.88	3.14	1.46	1.06		
3	0.86	1.61	3.01	4.30	5.18	6.62	7.00	6.13	4.82	3.06	1.45	1.04		
4	0.87	1.65	3.06	4.33	5.22	6,64	6.98	6.09	4.77	2.99	1.43	1.02		
s	0.88	1.69	3.10	4.36	5.26	6.67	6.97	6.05	4.71	2.92	1.42	1.00		
6	0.90	1.73	3.15	4.39	5.31	6.70	6.95	6.01	4.66	2.84	1.40	0.99		
7	0.91	1.77	3.20	4.41	5.35	6.73	6.93	5.97	4.60	2.77	1.39	0.95		
	0.92	1.81	3.24	4.44	5.40	6.76	6.91	5.94	4.55	2.70	1.37	0.93		
	0.94	1.86	3.29	4.46	5.45	6.78	6.88	5.90	4.50	2.63	1.36	0.90		
	0.95		3.34	4.49	5.49	6.81	6.86	5.86	4.44	2.56	1.35	0.90		
	0.97		3,39		5.54		6.84	5.83		2.50		0.90		

Figure 15. Sample of the ETo worksheet that displays the ET_o values used in the ET_l calculations. This worksheet is used to update ET_o based on climate data with current ET_o rates.

8. REFERENCES

- Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. 1998. Crop evapotranspiration Guidelines for computing crop water requirements. FAO Irrig. and Drain. Paper 56. Food and Agriculture Organization of the United Nations, Rome. pp. 300.
- Hargreaves, G.H., and Samani, Z.A. (1982) Estimating potential evapotranspiration. Tech. Note, J. Irrig. and Drain. Engrg., ASCE, 108(3):225-230.
- Monteith, J.L. 1965. Evaporation and the environment. 205-234. In the movement of water in living organisms, XIXth Symposium. Soc. of Exp. Biol., Swansea, Cambridge University Press.
- Snyder, R.L., Bali, K., Ventura, F., and Gomez-MacPherson. 2000. Estimating evaporation from bare or nearly bare soil. J. Irrig. and Drain. Engng., ASCE, 126(6):399-403.
- Walter, I.A., R.G. Allen, R. Elliott, M.E. Jensen, D. Itenfisu, B. Mecham, T.A. Howell, R. Snyder, P. Brown, S. Echings, T. Spofford, M. Hattendorf, R.H. Cuenca, J.L. Wright, D. Martin. 2000. ASCE's Standardized Reference Evapotranspiration Equation. Proc. of the Watershed Management 2000 Conference, June 2000, Ft. Collins, CO, Amer. Soc. of Civil Engineers, St. Joseph, MI.